stl源码剖析 详细学习笔记 RB_tree (2)

//---------------------------15/03/22----------------------------

//一直好奇KeyOfValue是什么,查了下就是一个和仿函数差不多的东西,在第7章会详细介绍

//现在只知道KeyOfValue()可以构造一个类调用他的operator()可以得到一个value的key

//允许重复的插入

template<class Key,class Value,
class KeyOfValue,class Compare,
class Alloc>

typename rb_tree<key, Value, KeyOfValue, Compare, Alloc>::iterator

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v)

{

link_type y = header;

link_type x = root();

//从根节点开始搜索直到x为叶子节点

while ( x !=
)

{

y = x;

x = key_compare(KeyOfValue()(v),key(x)) ? left(x) : right(x);

}

//把一个值为v的节点插入x的位置,y是x的父节点

return __insert(x,y,v);

}

//不允许重复

//可以插入(没有重复)返回的bool为true,否则为false

template<class Key,class Value,
class KeyOfValue,class Compare,
class Alloc>

pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator,bool>

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v)

{

link_type y = header;

link_type x =root();

bool comp =
true;

while( x !=
)

{

y = x;

comp = key_compare(KeyOfValue()(v),key(x));

x = comp ? left(x) :right(x);

}

iterator j = iterator(y);

//最后如果v "小于"(假设比较操作是小于) y

//这边做这样的操作是因为"大于等于"的时候都会向右走,所以需要换一下j.node和v的位置

//看看是否不相等

if(comp)

if(j == begin())   
//如果插入点的父节点是最左边的节点

return pair<iterator,bool>(__insert(x,y,v),true);

else           
//不是最左边就要--j继续判断

--j;

//这是因为只有最左边可以确定没有比v小的元素了

//如果j.node确实小于v就可以插入。

if(key_compare(key(j.node),KeyOfValue()(v)))

return pair<iterator,bool>(__insert(x,y,v),true);

return pair<iterator,bool>(j,false);

/*

总结下:会出现想等的情况只有有向右走的情况

如果最后是向右走的,那么有可能相等的元素就是j也就是y也就是要插入位置
的父节点

如果最后是向左走的,那么有可能相等的就是比j小的最大的那个元素,也就是--j

*/

}

//__insert

template<class Key,class Value,
class KeyOfValue,class Compare,
class Alloc>

typename    rb_tree<key, Value, KeyOfValue, Compare, Alloc>::iterator

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::

__insert(base_ptr x_, base_ptr y_,const Value& v)

{

link_type x = (link_type) x_;

link_type y = (link_type) y_;

link_type z;

//如果要插入的是根节点或者
要插入的位置不是空(header的左右儿子) 或v小于y 那么就是要插入到左边

if(y == header || x !=
|| key_compare(KeyOfValue()(v),key(y)))

{

z = create_node(v);

left(y) = z;   //如果y是header那可以设置leftmost为z

//如果要插入的是根节点,

if(y == header)

{

//设置根节点

root() = z;

//设置最右边的元素

rightmost() = z;

}

//如果要插到最左边

else
if(y == leftmost())

leftmost() = z;

}

else

{

z = create_node(v);

right(y) = z;

if (y == rightmost())

rightmost() = z;

}

//父节点为y左右儿子都是
空。

parent(z) = y;

left(z) =;

right(z) =;

//调整平衡

__rb_tree_rebalance(z,header->parent);

++node_count;

return iterator(z);

}

//旋转以及变色

//平衡这里inline是什么意思?里面明明有循环
而且代码这么长

//下面的代码几乎和算法导论里的一样

inline
void

__rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root)

{

x->color = __rb_tree_red;

while(x != root && x->parent->color == __rb_tree_red)

{

if(x->parent == x->parent->parent->left)

{

__rb_tree_node_base* y =x->parent->parent->right;

if(y && y->color == __rb_tree_red)

{

x->parent->color = __rb_tree_black;

y->color = __rb_tree_black;

x->parent->parent->color = __rb_tree_red;

x = x->parent->parent;

}

else

{

if(x == x->parent->right)

{

x = x->parent;

__rb_tree_rotate_left(x, root);

}

x->parent->color = __rb_tree_black;

x->parent->parent->color = __rb_tree_red;

__rb_tree_rotate_right(x->parent->parent, root);

}

}

else

{

__rb_tree_node_base* y =x->parent->parent->left;

if(y && y->color == __rb_tree_red)

{

x->parent->color = __rb_tree_black;

y->color = __rb_tree_black;

x->parent->parent->color = __rb_tree_red;

x = x->parent->parent;

}

else

{

if(x == x->parent->left)

{

x = x->parent;

__rb_tree_rotate_right(x,root);

}

x->parent->color = __rb_tree_black;

x->parent->parent->color = __rb_tree_red;

__rb_tree_rotate_left(x->parent->parent,root);

}

}

}

root->color = __rb_tree_black;

}

//左转

inline voide

__rb_tree_rotate_left(__rb_tree_node_base* x,__rb_tree_node_base*& root)

{

__rb_tree_node_base* y = x->right;

x->right = y->left;

if(y->left !=
)

y->left->parent = x;

y->parent = x->parent;

if(x == root)

root = y;

else
if (x == x->parent->left)

x->parent->left = y;

else

x->parent->right = y;

y->left = x;

y->parent = y;

}

//右转

inline voide

__rb_tree_rotate_right(__rb_tree_node_base* x,__rb_tree_node_base*& root)

{

__rb_tree_node_base* y = x->left;

x->left = y->right;

if(y->right !=
)

y->right->parent = x;

y->parent = x->parent;

if(x == root)

root = y;

else
if (x == x->parent->right)

x->parent->right = y;

else

x->parent->left = y;

y->right= x;

y->parent = y;

}

//find

template<class Key,class Value,
class KeyOfValue,class Compare,
class Alloc>

typename    rb_tree<key, Value, KeyOfValue, Compare, Alloc>::iterator

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k)

{

link_type y =header;

link_type x =root();

while(x !=
)

if(!key_compare(key(x), k))

y = x, x =left(x);

else

x = right(x);

iterator j =iterator(y);

return (j ==end() || key_compare(k, key(j.node))) ? end() :j;

}

//最后没有delete操作,之前的算法导论部分已经给出了delete操作


上一篇:java正则去掉小数点后多余0


下一篇:关于TCP的握手与挥手-----简单解释