两个年轻人-目标检测基础和VOC数据集

3.1 目标检测基本概念

3.1.1 什么是目标检测
目标检测是计算机视觉中的一个重要任务,近年来传统目标检测方法已经难以满足人们对目标检测效果的要求,随着深度学习在计算机视觉任务上取得的巨大进展,目前基于深度学习的目标检测算法已经成为主流。

相比较于基于深度学习的图像分类任务,目标检测任务更具难度。

具体区别如图3-1所示。

图像分类:只需要判断输入的图像中是否包含感兴趣物体。

目标检测:需要在识别出图片中目标类别的基础上,还要精确定位到目标的具体位置,并用外接矩形框标出。
3.1.2 目标检测的思路
自2012年Alex Krizhevsky凭借Alex在ImageNet图像分类挑战赛中拿下冠军之后,深度学习在图像识别尤其是图像分类领域开始大放异彩,大众的视野也重新回到深度神经网络中。紧接着,不断有更深更复杂的网络出现,一再刷新ImageNet图像分类比赛的记录。

大家发现,通过合理的构造,神经网络可以用来预测各种各样的实际问题。于是人们开始了基于CNN的目标检测研究, 但是随着进一步的探索大家发现,似乎CNN并不善于直接预测坐标信息。并且一幅图像中可能出现的物体个数也是不定的,模型如何构建也比较棘手。

因此,人们就想,如果知道了图中某个位置存在物体,再将对应的局部区域送入到分类网络中去进行判别,那我不就可以知道图像中每个物体的位置和类别了吗?

但是,怎么样才能知道每个物体的位置呢?显然我们是没办法知道的,但是我们可以去猜啊!所谓猜,其实就是通过滑窗的方式,罗列图中各种可能的区域,一个个去试,分别送入到分类网络进行分类得到其类别,同时我们会对当前的边界框进行微调,这样对于图像中每个区域都能得到(class,x1,y1,x2,y2)五个属性,汇总后最终就得到了图中物体的类别和坐标信息。

总结一下我们的这种方案思路:先确立众多候选框,再对候选框进行分类和微调。
图3-2展示了一个通过遍历各个区域,然后逐个分类去完成目标检测任务的过程示例。在待识别图上预设一个框,然后逐像素遍历,就能得到大量候选框(这里仅为示意图,图上只展示了3个框用于说明问题,具体数量由图像大小和预设框大小决定),每个框送入到分类网络分类都有一个得分(代表当前框中有一个船的置信度),那么得分最高的就代表识别的最准确的框,其位置就是最终要检测的目标的位置。

以上就是最初的基于深度学习的目标检测问题解决思路,RCNN,YOLO,SSD等众多经典网络模型都是沿着这个思路优化发展的。

本文会基于以上思路,带领大家从0开始一步步搭建一个目标检测模型,并完成模型的训练测试及评价!
3.1.3 目标框定义方式
任何图像任务的训练数据都要包括两项,图片和真实标签信息,通常叫做GT。

图像分类中,标签信息是类别。目标检测的标签信息除了类别label以外,需要同时包含目标的位置信息,也就是目标的外接矩形框bounding box。

用来表达bbox的格式通常有两种,(x1, y1, x2, y2) 和 (c_x, c_y, w, h) ,
之所以使用两种不同的目标框信息表达格式,是因为两种格式会分别在后续不同场景下更加便于计算。

两种格式互相转换的实现在utils.py中,代码也非常简单:

def xy_to_cxcy(xy):
    """
    Convert bounding boxes from boundary coordinates (x_min, y_min, x_max, y_max) to center-size coordinates (c_x, c_y, w, h).

    :param xy: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
    :return: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
    """
    return torch.cat([(xy[:, 2:] + xy[:, :2]) / 2,  # c_x, c_y
                      xy[:, 2:] - xy[:, :2]], 1)  # w, h


def cxcy_to_xy(cxcy):
    """
    Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max).

    :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
    :return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
    """
    return torch.cat([cxcy[:, :2] - (cxcy[:, 2:] / 2),  # x_min, y_min
                      cxcy[:, :2] + (cxcy[:, 2:] / 2)], 1)  # x_max, y_max

3.1.4 交并比(IoU)
在目标检测任务中,关于IOU的计算贯穿整个模型的训练测试和评价过程,是非常非常重要的一个概念,其目的是用来衡量两个目标框的重叠程度。

IoU的全称是交并比(Intersection over Union),表示两个目标框的交集占其并集的比例。
图中可以看到,分子中黄色区域为红bbox和绿bbox的交集,分母中黄+红+绿区域为红bbox和绿bbox的并集,两者之比即为iou。

那么具体怎么去计算呢?这里给出计算流程的简述:

1.首先获取两个框的坐标,红框坐标: 左上(red_x1, red_y1), 右下(red_x2, red_y2),绿框坐标: 左上(green_x1, green_y1),右下(green_x2, green_y2)
2.计算两个框左上点的坐标最大值:(max(red_x1, green_x1), max(red_y1, green_y1)), 和右下点坐标最小值:(min(red_x2, green_x2), min(red_y2, green_y2))
3.利用2算出的信息计算黄框面积:yellow_area
4.计算红绿框的面积:red_area 和 green_area
5.iou = yellow_area / (red_area + green_area - yellow_area)

如果文字表述的不够清晰,就再看下代码:

def find_intersection(set_1, set_2):
    """ 
    Find the intersection of every box combination between two sets of boxes that are in boundary coordinates.

    :param set_1: set 1, a tensor of dimensions (n1, 4)                                                                                                           
    :param set_2: set 2, a tensor of dimensions (n2, 4)
    :return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
    """

    # PyTorch auto-broadcasts singleton dimensions
    lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2].unsqueeze(0))  # (n1, n2, 2)
    upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:].unsqueeze(0))  # (n1, n2, 2)
    intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0)  # (n1, n2, 2)
    return intersection_dims[:, :, 0] * intersection_dims[:, :, 1]  # (n1, n2)


def find_jaccard_overlap(set_1, set_2):
    """ 
    Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates.

    :param set_1: set 1, a tensor of dimensions (n1, 4)
    :param set_2: set 2, a tensor of dimensions (n2, 4)
    :return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
    """

    # Find intersections
    intersection = find_intersection(set_1, set_2)  # (n1, n2)

    # Find areas of each box in both sets
    areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1])  # (n1)
    areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1])  # (n2)

    # Find the union
    # PyTorch auto-broadcasts singleton dimensions
    union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection  # (n1, n2)

    return intersection / union  # (n1, n2)

以上代码位于utils.py脚本的find_intersection和find_jaccard_overlap
3.1.5 小结
以上便是本小节的全部内容了。

本小节我们首先介绍了目标检测的问题背景,随后分析了一个实现目标检测的解决思路,这也是众多经典检测网络和本章要介绍的模型所采用的思路(即先确立众多候选框,再对候选框进行分类和微调)。最后介绍了bbox和IoU这两个目标检测相关的基本概念。

下一小节,我们将会从数据入手,介绍下目标检测领域最常见的一个数据集VOC,以及数据读取相关的代码。

3.2 目标检测数据集VOC

3.2.1 VOC数据集简介
VOC数据集是目标检测领域最常用的标准数据集之一,几乎所有检测方向的论文,如faster_rcnn、yolo、SSD等都会给出其在VOC数据集上训练并评测的效果。因此我们我们的教程也基于VOC来开展实验,具体地,我们使用VOC2007和VOC2012这两个最流行的版本作为训练和测试的数据。
数据集类别
VOC数据集在类别上可以分为4大类,20小类,其类别信息如图3-5所示。
数据集量级
VOC数量集图像和目标数量的基本信息如下图3-6所示:
其中,Images表示图片数量,Objects表示目标数量。
数据集下载

VOC官网经常上不去,为确保后续实验准确且顺利的进行,大家可以点击这里的百度云链接进行下载:
VOC百度云下载链接 解压码(7aek)
下面是通过官网下载的步骤:
进入VOC官网链接:
数据集说明

将下载得到的压缩包解压,可以得到如图3-9所示的一系列文件夹,由于VOC数据集不仅被拿来做目标检测,也可以拿来做分割等任务,因此除了目标检测所需的文件之外,还包含分割任务所需的文件,比如SegmentationClass,SegmentationObject,这里,我们主要对目标检测任务涉及到的文件进行介绍。
1.JPEGImages

这个文件夹中存放所有的图片,包括训练验证测试用到的所有图片。

2.ImageSets

这个文件夹中包含三个子文件夹,Layout、Main、Segmentation

Layout文件夹中存放的是train,valid,test和train+valid数据集的文件名

Segmentation文件夹中存放的是分割所用train,valid,test和train+valid数据集的文件名

Main文件夹中存放的是各个类别所在图片的文件名,比如cow_val,表示valid数据集中,包含有cow类别目标的图片名称。

3.Annotations

Annotation文件夹中存放着每张图片相关的标注信息,以xml格式的文件存储,可以通过记事本或者浏览器打开,我们以000001.jpg这张图片为例说明标注文件中各个属性的含义,

猛一看去,内容又多又复杂,其实仔细研究一下,只有红框区域内的内容是我们真正需要关注的。

  • filename:图片名称
  • size:图片宽高,
  • depth表示图片通道数
  • object:表示目标,包含下面两部分内容。
  • 首先是目标类别name为dog。pose表示目标姿势为left,truncated表示是否是一个被截断的目标,1表示是,0表示不是,在这个例子中,只露出狗头部分,所以truncated为1。difficult为0表示此目标不是一个难以识别的目标。
  • 然后就是目标的bbox信息,可以看到,这里是以[xmin,ymin,xmax,ymax]格式进行标注的,分别表示dog目标的左上角和右下角坐标。
    一张图片中有多少需要识别的目标,其xml文件中就有多少个object。上面的例子中有两个object,分别对应人和狗。
    3.2.2 VOC数据集的dataloader的构建
  1. 数据集准备
    根据上面的介绍可以看出,VOC数据集的存储格式还是比较复杂的,为了后面训练中的读取代码更加简洁,这里我们准备了一个预处理脚本create_data_lists.py。

该脚本的作用是进行一系列的数据准备工作,主要是提前将记录标注信息的xml文件(Annotations)进行解析,并将信息整理到json文件之中,这样在运行训练脚本时,只需简单的从json文件中读取已经按想要的格式存储好的标签信息即可。

注: 这样的预处理并不是必须的,和算法或数据集本身均无关系,只是取决于开发者的代码习惯,不同检测框架的处理方法也是不一致的。

可以看到,create_data_lists.py脚本仅有几行代码,其内部调用了utils.py中的create_data_lists方法:

"""python
    create_data_lists
"""
from utils import create_data_lists

if __name__ == '__main__':
    # voc07_path,voc12_path为我们训练测试所需要用到的数据集,output_folder为我们生成构建dataloader所需文件的路径
    # 参数中涉及的路径以个人实际路径为准,建议将数据集放到dataset目录下,和教程保持一致
    create_data_lists(voc07_path='../../../dataset/VOCdevkit/VOC2007',
                      voc12_path='../../../dataset/VOCdevkit/VOC2012',
                      output_folder='../../../dataset/VOCdevkit')

设置好对应路径后,我们运行数据集准备脚本:

tiny_detector_demo$ python create_data_lists.py

很快啊!dataset/VOCdevkit目录下就生成了若干json文件,这些文件会在后面训练中真正被用到。

不妨手动打开这些json文件,看下都记录了哪些信息。

下面来介绍一下parse_annotation函数内部都做了什么,json中又记录了哪些信息。这部分作为选学,不感兴趣可以跳过,只要你已经明确了json中记录的信息的含义。

代码阅读可以参照注释,建议配图3-11一起食用:

"""python
    xml文件解析
"""

import json
import os
import torch
import random
import xml.etree.ElementTree as ET    #解析xml文件所用工具
import torchvision.transforms.functional as FT

#GPU设置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Label map
#voc_labels为VOC数据集中20类目标的类别名称
voc_labels = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
              'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')

#创建label_map字典,用于存储类别和类别索引之间的映射关系。比如:{1:'aeroplane', 2:'bicycle',......}
label_map = {k: v + 1 for v, k in enumerate(voc_labels)}
#VOC数据集默认不含有20类目标中的其中一类的图片的类别为background,类别索引设置为0
label_map['background'] = 0

#将映射关系倒过来,{类别名称:类别索引}
rev_label_map = {v: k for k, v in label_map.items()}  # Inverse mapping

#解析xml文件,最终返回这张图片中所有目标的标注框及其类别信息,以及这个目标是否是一个difficult目标
def parse_annotation(annotation_path):
    #解析xml
    tree = ET.parse(annotation_path)
    root = tree.getroot()

    boxes = list()    #存储bbox
    labels = list()    #存储bbox对应的label
    difficulties = list()    #存储bbox对应的difficult信息

    #遍历xml文件中所有的object,前面说了,有多少个object就有多少个目标
    for object in root.iter('object'):
        #提取每个object的difficult、label、bbox信息
        difficult = int(object.find('difficult').text == '1')
        label = object.find('name').text.lower().strip()
        if label not in label_map:
            continue
        bbox = object.find('bndbox')
        xmin = int(bbox.find('xmin').text) - 1
        ymin = int(bbox.find('ymin').text) - 1
        xmax = int(bbox.find('xmax').text) - 1
        ymax = int(bbox.find('ymax').text) - 1
        #存储
        boxes.append([xmin, ymin, xmax, ymax])
        labels.append(label_map[label])
        difficulties.append(difficult)

    #返回包含图片标注信息的字典
    return {'boxes': boxes, 'labels': labels, 'difficulties': difficulties}

同样,建议配图食用:

到这里,我们的训练数据就准备好了,接下来开始一步步构建训练所需的dataloader吧!

2.构建dataloader

在这里,我们假设你对Pytorch的 Dataset 和 DataLoader 两个概念有最基本的了解。

如果没有,也不必担心,你可以先阅读一下第2-1节数据读取与数据扩增,进行简单的了解。

下面开始介绍构建dataloader的相关代码:

首先了解一下训练的时候在哪里定义了dataloader以及是如何定义的。
以下是train.py中的部分代码段:

    #train_dataset和train_loader的实例化
    train_dataset = PascalVOCDataset(data_folder,
                                     split='train',
                                     keep_difficult=keep_difficult)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
                                               collate_fn=train_dataset.collate_fn, num_workers=workers,
                                               pin_memory=True)  # note that we're passing the collate function here

可以看到,首先需要实例化PascalVOCDataset类得到train_dataset,然后将train_dataset传入torch.utils.data.DataLoader,进而得到train_loader。

接下来看一下PascalVOCDataset是如何定义的。
代码位于 datasets.py 脚本中,可以看到,PascalVOCDataset继承了torch.utils.data.Dataset,然后重写了__init__ , getitem, len 和 collate_fn 四个方法,这也是我们在构建自己的dataset的时候需要经常做的工作,配合下面注释理解代码:

"""python
    PascalVOCDataset具体实现过程
"""
import torch
from torch.utils.data import Dataset
import json
import os
from PIL import Image
from utils import transform


class PascalVOCDataset(Dataset):
    """
    A PyTorch Dataset class to be used in a PyTorch DataLoader to create batches.
    """

    #初始化相关变量
    #读取images和objects标注信息
    def __init__(self, data_folder, split, keep_difficult=False):
        """
        :param data_folder: folder where data files are stored
        :param split: split, one of 'TRAIN' or 'TEST'
        :param keep_difficult: keep or discard objects that are considered difficult to detect?
        """
        self.split = split.upper()    #保证输入为纯大写字母,便于匹配{'TRAIN', 'TEST'}

        assert self.split in {'TRAIN', 'TEST'}

        self.data_folder = data_folder
        self.keep_difficult = keep_difficult

        # Read data files
        with open(os.path.join(data_folder, self.split + '_images.json'), 'r') as j:
            self.images = json.load(j)
        with open(os.path.join(data_folder, self.split + '_objects.json'), 'r') as j:
            self.objects = json.load(j)

        assert len(self.images) == len(self.objects)

    #循环读取image及对应objects
    #对读取的image及objects进行tranform操作(数据增广)
    #返回PIL格式图像,标注框,标注框对应的类别索引,对应的difficult标志(True or False)
    def __getitem__(self, i):
        # Read image
        #*需要注意,在pytorch中,图像的读取要使用Image.open()读取成PIL格式,不能使用opencv
        #*由于Image.open()读取的图片是四通道的(RGBA),因此需要.convert('RGB')转换为RGB通道
        image = Image.open(self.images[i], mode='r')
        image = image.convert('RGB')

        # Read objects in this image (bounding boxes, labels, difficulties)
        objects = self.objects[i]
        boxes = torch.FloatTensor(objects['boxes'])  # (n_objects, 4)
        labels = torch.LongTensor(objects['labels'])  # (n_objects)
        difficulties = torch.ByteTensor(objects['difficulties'])  # (n_objects)

        # Discard difficult objects, if desired
        #如果self.keep_difficult为False,即不保留difficult标志为True的目标
        #那么这里将对应的目标删去
        if not self.keep_difficult:
            boxes = boxes[1 - difficulties]
            labels = labels[1 - difficulties]
            difficulties = difficulties[1 - difficulties]

        # Apply transformations
        #对读取的图片应用transform
        image, boxes, labels, difficulties = transform(image, boxes, labels, difficulties, split=self.split)

        return image, boxes, labels, difficulties

    #获取图片的总数,用于计算batch数
    def __len__(self):
        return len(self.images)

    #我们知道,我们输入到网络中训练的数据通常是一个batch一起输入,而通过__getitem__我们只读取了一张图片及其objects信息
    #如何将读取的一张张图片及其object信息整合成batch的形式呢?
    #collate_fn就是做这个事情,
    #对于一个batch的images,collate_fn通过torch.stack()将其整合成4维tensor,对应的objects信息分别用一个list存储
    def collate_fn(self, batch):
        """
        Since each image may have a different number of objects, we need a collate function (to be passed to the DataLoader).
        This describes how to combine these tensors of different sizes. We use lists.
        Note: this need not be defined in this Class, can be standalone.
        :param batch: an iterable of N sets from __getitem__()
        :return: a tensor of images, lists of varying-size tensors of bounding boxes, labels, and difficulties
        """

        images = list()
        boxes = list()
        labels = list()
        difficulties = list()

        for b in batch:
            images.append(b[0])
            boxes.append(b[1])
            labels.append(b[2])
            difficulties.append(b[3])

        #(3,224,224) -> (N,3,224,224)
        images = torch.stack(images, dim=0)

        return images, boxes, labels, difficulties  # tensor (N, 3, 224, 224), 3 lists of N tensors each

3.关于数据增强
到这里为止,我们的dataset就算是构建好了,已经可以传给torch.utils.data.DataLoader来获得用于输入网络训练的数据了。

但是不急,构建dataset中有个很重要的一步我们上面只是提及了一下,那就是transform操作(数据增强)。

也就是这一行代码

image, boxes, labels, difficulties = transform(image, boxes, labels, difficulties, split=self.split)

这部分比较重要,但是涉及代码稍多,对于基础较薄弱的伙伴可以作为选学内容,后面再认真读代码。你只需知道,同分类网络一样,训练目标检测网络同样需要进行数据增强,这对提升网络精度和泛化能力很有帮助。

需要注意的是,涉及位置变化的数据增强方法,同样需要对目标框进行一致的处理,因此目标检测框架的数据处理这部分的代码量通常都不小,且比较容易出bug。这里为了降低代码的难度,我们只是使用了几种比较简单的数据增强。

transform 函数的具体代码实现位于 utils.py 中,下面简单进行讲解:

"""python
    transform操作是训练模型中一项非常重要的工作,其中不仅包含数据增强以提升模型性能的相关操作,也包含如数据类型转换(PIL to Tensor)、归一化(Normalize)这些必要操作。
"""
import json
import os
import torch
import random
import xml.etree.ElementTree as ET
import torchvision.transforms.functional as FT

"""
可以看到,transform分为TRAIN和TEST两种模式,以本实验为例:

在TRAIN时进行的transform有:
1.以随机顺序改变图片亮度,对比度,饱和度和色相,每种都有50%的概率被执行。photometric_distort
2.扩大目标,expand
3.随机裁剪图片,random_crop
4.0.5的概率进行图片翻转,flip
*注意:a. 第一种transform属于像素级别的图像增强,目标相对于图片的位置没有改变,因此bbox坐标不需要变化。
         但是2,3,4,5都属于图片的几何变化,目标相对于图片的位置被改变,因此bbox坐标要进行相应变化。

在TRAIN和TEST时都要进行的transform有:
1.统一图像大小到(224,224),resize
2.PIL to Tensor
3.归一化,FT.normalize()

注1: resize也是一种几何变化,要知道应用数据增强策略时,哪些属于几何变化,哪些属于像素变化
注2: PIL to Tensor操作,normalize操作必须执行
"""

def transform(image, boxes, labels, difficulties, split):
    """
    Apply the transformations above.
    :param image: image, a PIL Image
    :param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
    :param labels: labels of objects, a tensor of dimensions (n_objects)
    :param difficulties: difficulties of detection of these objects, a tensor of dimensions (n_objects)
    :param split: one of 'TRAIN' or 'TEST', since different sets of transformations are applied
    :return: transformed image, transformed bounding box coordinates, transformed labels, transformed difficulties
    """

    #在训练和测试时使用的transform策略往往不完全相同,所以需要split变量指明是TRAIN还是TEST时的transform方法
    assert split in {'TRAIN', 'TEST'}

    # Mean and standard deviation of ImageNet data that our base VGG from torchvision was trained on
    # see: https://pytorch.org/docs/stable/torchvision/models.html
    #为了防止由于图片之间像素差异过大而导致的训练不稳定问题,图片在送入网络训练之间需要进行归一化
    #对所有图片各通道求mean和std来获得
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    new_image = image
    new_boxes = boxes
    new_labels = labels
    new_difficulties = difficulties

    # Skip the following operations for evaluation/testing
    if split == 'TRAIN':
        # A series of photometric distortions in random order, each with 50% chance of occurrence, as in Caffe repo
        new_image = photometric_distort(new_image)

        # Convert PIL image to Torch tensor
        new_image = FT.to_tensor(new_image)

        # Expand image (zoom out) with a 50% chance - helpful for training detection of small objects
        # Fill surrounding space with the mean of ImageNet data that our base VGG was trained on
        if random.random() < 0.5:
            new_image, new_boxes = expand(new_image, boxes, filler=mean)

        # Randomly crop image (zoom in)
        new_image, new_boxes, new_labels, new_difficulties = random_crop(new_image, new_boxes, new_labels,
                                                                         new_difficulties)

        # Convert Torch tensor to PIL image
        new_image = FT.to_pil_image(new_image)

        # Flip image with a 50% chance
        if random.random() < 0.5:
            new_image, new_boxes = flip(new_image, new_boxes)

    # Resize image to (224, 224) - this also converts absolute boundary coordinates to their fractional form
    new_image, new_boxes = resize(new_image, new_boxes, dims=(224, 224))

    # Convert PIL image to Torch tensor
    new_image = FT.to_tensor(new_image)

    # Normalize by mean and standard deviation of ImageNet data that our base VGG was trained on
    new_image = FT.normalize(new_image, mean=mean, std=std)

    return new_image, new_boxes, new_labels, new_difficulties

3.2.3 小结
到这里,这一小节的内容就介绍完了。

回顾下,本节中,我们首先介绍了VOC数据集的基本信息以及如何下载,随后我们介绍了和读取VOC数据集的相关代码。

万事俱备,只欠模型~

上一篇:yolov3改进4层特征检测层


下一篇:DW_目标检测基础