学习OpenCV——HOG+SVM

#include "cv.h"
#include "highgui.h"
#include "stdafx.h"
#include <ml.h>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace cv;
using namespace std; int main(int argc, char** argv)
{
vector<string> img_path;
vector<int> img_catg;
int nLine = ;
string buf;
ifstream svm_data( "E:/SVM_DATA.txt" );
unsigned long n; while( svm_data )
{
if( getline( svm_data, buf ) )
{
nLine ++;
if( nLine % == )
{
img_catg.push_back( atoi( buf.c_str() ) );//atoi将字符串转换成整型,标志(0,1)
}
else
{
img_path.push_back( buf );//图像路径
}
}
}
svm_data.close();//关闭文件 CvMat *data_mat, *res_mat;
int nImgNum = nLine / ; //读入样本数量
////样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小
data_mat = cvCreateMat( nImgNum, , CV_32FC1 );
cvSetZero( data_mat );
//类型矩阵,存储每个样本的类型标志
res_mat = cvCreateMat( nImgNum, , CV_32FC1 );
cvSetZero( res_mat ); IplImage* src;
IplImage* trainImg=cvCreateImage(cvSize(,),,);//需要分析的图片 for( string::size_type i = ; i != img_path.size(); i++ )
{
src=cvLoadImage(img_path[i].c_str(),);
if( src == NULL )
{
cout<<" can not load the image: "<<img_path[i].c_str()<<endl;
continue;
} cout<<" processing "<<img_path[i].c_str()<<endl; cvResize(src,trainImg); //读取图片
HOGDescriptor *hog=new HOGDescriptor(cvSize(,),cvSize(,),cvSize(,),cvSize(,),); //具体意思见参考文章1,2
vector<float>descriptors;//结果数组
hog->compute(trainImg, descriptors,Size(,), Size(,)); //调用计算函数开始计算
cout<<"HOG dims: "<<descriptors.size()<<endl;
//CvMat* SVMtrainMat=cvCreateMat(descriptors.size(),1,CV_32FC1);
n=;
for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
cvmSet(data_mat,i,n,*iter);
n++;
}
//cout<<SVMtrainMat->rows<<endl;
cvmSet( res_mat, i, , img_catg[i] );
cout<<" end processing "<<img_path[i].c_str()<<" "<<img_catg[i]<<endl;
} CvSVM svm = CvSVM();
CvSVMParams param;
CvTermCriteria criteria;
criteria = cvTermCriteria( CV_TERMCRIT_EPS, , FLT_EPSILON );
param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria );
/*
SVM种类:CvSVM::C_SVC
Kernel的种类:CvSVM::RBF
degree:10.0(此次不使用)
gamma:8.0
coef0:1.0(此次不使用)
C:10.0
nu:0.5(此次不使用)
p:0.1(此次不使用)
然后对训练数据正规化处理,并放在CvMat型的数组里。
*/
//☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆
svm.train( data_mat, res_mat, NULL, NULL, param );
//☆☆利用训练数据和确定的学习参数,进行SVM学习☆☆☆☆
svm.save( "SVM_DATA.xml" ); //检测样本
IplImage *test;
vector<string> img_tst_path;
ifstream img_tst( "E:/SVM_TEST.txt" );
while( img_tst )
{
if( getline( img_tst, buf ) )
{
img_tst_path.push_back( buf );
}
}
img_tst.close(); CvMat *test_hog = cvCreateMat( , , CV_32FC1 );
char line[];
ofstream predict_txt( "SVM_PREDICT.txt" );
for( string::size_type j = ; j != img_tst_path.size(); j++ )
{
test = cvLoadImage( img_tst_path[j].c_str(), );
if( test == NULL )
{
cout<<" can not load the image: "<<img_tst_path[j].c_str()<<endl;
continue;
} cvZero(trainImg);
cvResize(test,trainImg); //读取图片
HOGDescriptor *hog=new HOGDescriptor(cvSize(,),cvSize(,),cvSize(,),cvSize(,),); //具体意思见参考文章1,2
vector<float>descriptors;//结果数组
hog->compute(trainImg, descriptors,Size(,), Size(,)); //调用计算函数开始计算
cout<<"HOG dims: "<<descriptors.size()<<endl;
CvMat* SVMtrainMat=cvCreateMat(,descriptors.size(),CV_32FC1);
n=;
for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
cvmSet(SVMtrainMat,,n,*iter);
n++;
} int ret = svm.predict(SVMtrainMat);
sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
predict_txt<<line;
}
predict_txt.close(); //cvReleaseImage( &src);
//cvReleaseImage( &sampleImg );
//cvReleaseImage( &tst );
//cvReleaseImage( &tst_tmp );
cvReleaseMat( &data_mat );
cvReleaseMat( &res_mat ); return ;
}

from: http://blog.csdn.net/yangtrees/article/details/7471222

上一篇:KEngine策划指南:配置表格的编辑与编译


下一篇:hibernate学习笔记6--Criteria查询方式、完整小练习(开发步骤)