Linux 进程间通信(一)(经典IPC:管道、FIFO)

管道

管道是Unix系统IPC的最古老方式,有两种局限性:

(1)   历史上它们是半双工的(即数据只能在一个方向上流动),虽然现在某些系统提供了全双工管道,但是为了可移植性,不要抱有绝对的全双工假设。

(2)   管道只能在具有公共祖先的两个进程之间使用(一般都是用于父子进程之间)。

管道是通过调用pipe函数创建的:

#include <unistd.h>

int pipe(int fd[2]);

返回值:成功,返回0;失败,返回-1

说明:

fd返回两个文件描述符:fd[0]用于读,fd[1]用于写,fd[1]的输出刚好是fd[0]的输入。

即shell为每一条命令单独创建一个进程,然后管道将前一条命令的标准输出与后一条命令的标准输入相连接。

注:

POSIX.1允许实现支持全双工管道,对于这些实现,fd[0]和fd[1]以读/写方式打开。

如下给出了两种描绘半双工管道的方法,左图中管道的两端在一个进程中相互连接,右图中则强调数据需要通过内核在管道中流动:

Linux 进程间通信(一)(经典IPC:管道、FIFO)

管道通常在单个进程中没有太大用处,下图显示了父子进程之间的管道:进程先调用pipe,接着调用fork,从而创建从父进程到子进程的IPC管道

Linux 进程间通信(一)(经典IPC:管道、FIFO)

fork之后具体要做什么取决于我们想要的数据流的方向。对于从父进程到子进程的管道,父进程关闭管道的读端(fd[0]),子进程关闭管道的写端(fd[1]):

Linux 进程间通信(一)(经典IPC:管道、FIFO)

当管道的一端被关闭后,下列两条规则起作用:

(1)   当read一个写端已被关闭的管道时,在所有数据都被读取后,read返回0,表示文件结束。

(2)   当write一个读端已被关闭的管道时,则产生信号SIGPIPE,如果忽略该信号或者捕捉该信号并从其处理程序返回,则write返回-1,errno设置为EPIPE。

如下为管道程序实例:

实例一:创建一个从父进程到子进程的管道,并且父进程经由该管道向子进程传送数据:

 [root@benxintuzi ipc]# cat pipe1.c
#include <unistd.h>
#include <stdio.h> #define MAXLINE 1024 int main(void)
{
int n;
int fd[];
pid_t pid;
char line[MAXLINE]; if (pipe(fd) < )
printf("pipe error\n");
if ((pid = fork()) < ) {
printf("fork error\n");
} else if (pid > ) { /* parent */
close(fd[]);
write(fd[], "hello world\n", ); /* write data to fd[1] */
} else { /* child */
close(fd[]);
n = read(fd[], line, MAXLINE); /* read data from fd[0] */
write(STDOUT_FILENO, line, n); /* write data to standard output */
} return ();
} [root@benxintuzi ipc]# ./pipe1
[root@benxintuzi ipc]# hello world [root@benxintuzi ipc]#

实例二:编写一个程序,其功能是每次一页地显示已产生的输出。为了避免先将所有数据写到一个临时文件中,然后再调用系统中有关程序显示该文件,我们希望通过管道将输出直接送到分页程序。为此,先创建一个管道,fork一个子进程,使子进程的标准输入成为管道的读端,然后调用exec,执行分页程序:(说明点:1. 在调用fork之前,先创建一个管道。调用fork之后,父进程关闭读端,子进程关闭写端,然后子进程调用dup2,使其标准输入成为管道的读端。当执行分页程序时,其标准输入就是管道的读端了; 2. 我们使用环境变量PAGER来获得用户分页程序名,如果没有成功,则使用系统默认值,这是环境变量的常见用法。)

 [root@benxintuzi ipc]# cat pipe2.c
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h> #define DEF_PAGER "/bin/more" /* default pager program */
#define MAXLINE 1024 int main(int argc, char *argv[])
{
int n;
int fd[];
pid_t pid;
char *pager, *argv0;
char line[MAXLINE];
FILE *fp; if (argc != )
{
printf("usage: a.out <pathname>\n");
return (-);
} if ((fp = fopen(argv[], "r")) == NULL)
printf("can't open %s\n", argv[]);
if (pipe(fd) < )
printf("pipe error\n"); if ((pid = fork()) < ) {
printf("fork error\n");
} else if (pid > ) { /* parent */
close(fd[]); /* close read end */ /* parent copies argv[1] to pipe */
while (fgets(line, MAXLINE, fp) != NULL) {
n = strlen(line);
if (write(fd[], line, n) != n)
printf("write error to pipe\n");
}
if (ferror(fp))
printf("fgets error\n"); close(fd[]); /* close write end of pipe for reader */ if (waitpid(pid, NULL, ) < )
printf("waitpid error\n");
return ();
} else { /* child */
close(fd[]); /* close write end */
if (fd[] != STDIN_FILENO) {
if (dup2(fd[], STDIN_FILENO) != STDIN_FILENO)
printf("dup2 error to stdin\n");
close(fd[]); /* don't need this after dup2 */
} /* get arguments for execl() */
if ((pager = getenv("PAGER")) == NULL)
pager = DEF_PAGER;
if ((argv0 = strrchr(pager, '/')) != NULL)
argv0++; /* step past rightmost slash */
else
argv0 = pager; /* no slash in pager */ if (execl(pager, argv0, (char *)) < )
printf("execl error for %s\n", pager);
}
return ();
}
[root@benxintuzi ipc]# ./pipe2 pipe2.c
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h> #define DEF_PAGER "/bin/more" /* default pager program */
#define MAXLINE 1024 int main(int argc, char *argv[])
{
int n;
int fd[];
pid_t pid;
char *pager, *argv0;
char line[MAXLINE];
FILE *fp; if (argc != )
{
printf("usage: a.out <pathname>\n");
return (-);
} if ((fp = fopen(argv[], "r")) == NULL)
printf("can't open %s\n", argv[]);
if (pipe(fd) < )
printf("pipe error\n"); if ((pid = fork()) < ) {
printf("fork error\n");
} else if (pid > ) { /* parent */
close(fd[]); /* close read end */ /* parent copies argv[1] to pipe */
while (fgets(line, MAXLINE, fp) != NULL) {
--More--

实例三:父子进程同步函数的管道实现:TELL_WAIT、TELL_PARENT、TELL_CHILD、WAIT_PARENT、WAIT_CHILD:(说明点:父进程在调用TELL_CHILD时,经由上一个管道写一个字符“p”,子进程在调用TELL_PARENT时,经由下一个管道写一个字符“c”,相应的WAIT_XXX函数调用read读一个字符,没有读到字符时则阻塞)

Linux 进程间通信(一)(经典IPC:管道、FIFO)

 static int    pfd1[], pfd2[];

 void TELL_WAIT(void)
{
if (pipe(pfd1) < || pipe(pfd2) < )
printf("pipe error\n");
} void TELL_PARENT(pid_t pid)
{
if (write(pfd2[], "c", ) != )
printf("write error\n");
} void WAIT_PARENT(void)
{
char c; if (read(pfd1[], &c, ) != )
printf("read error\n"); if (c != 'p')
{
printf("WAIT_PARENT: incorrect data\n");
return ;
} } void TELL_CHILD(pid_t pid)
{
if (write(pfd1[], "p", ) != )
printf("write error\n");
} void WAIT_CHILD(void)
{
char c; if (read(pfd2[], &c, ) != )
printf("read error\n"); if (c != 'c')
{
printf("WAIT_CHILD: incorrect data\n");
return ;
}
}

常见的操作是创建一个连接到另一个进程的管道,然后读其输出或向其输入端发送数据,为此,标准I/O库提供了两个函数popen和pclose。这两个函数的功能是:创建一个管道,fork一个子进程,关闭未使用的管道端,然后执行一个shell运行命令,等待命令终止(使用popen可以减少代码编写量)。

#include <stdio.h>

FILE* popen(const char* cmdstring, const char* type);

返回值:成功,返回文件指针;失败,返回NULL

int pclose(FILE* fp);

返回值:成功,返回cmdstring的终止状态;失败,返回-1

说明:

函数popen先执行fork,然后调用exec执行cmdstring,并且返回一个标准I/O文件指针。如果type是r,则文件指针连接到cmdstring的标准输出;如果type是w,则文件指针连接到cmdstring的标准输入,见下图:

Linux 进程间通信(一)(经典IPC:管道、FIFO)

pclose函数关闭标准I/O流,等待命令终止,然后返回shell的终止状态。

cmdstring由Bourne shell以下列方式执行:sh –c cmdstring

shell命令${PAGER:-more}的意思是:如果shell变量PAGER已经定义,且其值非空,则使用其值,否则使用字符串more。利用popen函数重写实例二

 [root@benxintuzi ipc]# cat pipe3.c
#include <stdio.h>
#include <sys/wait.h> #define MAXLINE 1024
#define PAGER "${PAGER:-more}" /* environment variable, or default */ int main(int argc, char *argv[])
{
char line[MAXLINE];
FILE *fpin, *fpout; if (argc != )
{
printf("usage: a.out <pathname>\n");
return (-);
} if ((fpin = fopen(argv[], "r")) == NULL)
printf("can't open %s\n", argv[]); if ((fpout = popen(PAGER, "w")) == NULL)
printf("popen error\n"); /* copy argv[1] to pager */
while (fgets(line, MAXLINE, fpin) != NULL) {
if (fputs(line, fpout) == EOF)
printf("fputs error to pipe\n");
}
if (ferror(fpin))
printf("fgets error\n");
if (pclose(fpout) == -)
printf("pclose error\n"); return ();
}
[root@benxintuzi ipc]# ./pipe3 pipe2.c
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h> #define DEF_PAGER "/bin/more" /* default pager program */
#define MAXLINE 1024 int main(int argc, char *argv[])
{
int n;
int fd[];
pid_t pid;
char *pager, *argv0;
char line[MAXLINE];
FILE *fp; if (argc != )
{
printf("usage: a.out <pathname>\n");
return (-);
} if ((fp = fopen(argv[], "r")) == NULL)
printf("can't open %s\n", argv[]);
if (pipe(fd) < )
printf("pipe error\n"); if ((pid = fork()) < ) {
printf("fork error\n");
} else if (pid > ) { /* parent */
close(fd[]); /* close read end */ /* parent copies argv[1] to pipe */
while (fgets(line, MAXLINE, fp) != NULL) {
--More--

协同进程:

当一个进程既要产生某个程序的输入,又读取该程序的输出时,它就变成了协同进程(coprocess)。协同进程通常在shell后台运行,其标准输入和标准输出通过管道连接到另一个程序。popen只提供连接到另一个进程的标准输入或标准输出的一个单向管道,而协同进程则有连接到另一个进程的两个单向管道:一个连接到其标准输入,另一个则来自其标准输出。

实例:从标准输入读取两个数,计算它们的和,然后将和写至其标准输出。

 [root@benxintuzi ipc]# cat coprocess.c
#include <unistd.h>
#include <stdio.h> #define MAXLINE 1024 int main(void)
{
int n, int1, int2;
char line[MAXLINE]; while ((n = read(STDIN_FILENO, line, MAXLINE)) > ) {
line[n] = ; /* null terminate */
if (sscanf(line, "%d%d", &int1, &int2) == ) {
sprintf(line, "%d\n", int1 + int2);
n = strlen(line);
if (write(STDOUT_FILENO, line, n) != n)
printf("write error\n");
} else {
if (write(STDOUT_FILENO, "invalid args\n", ) != )
printf("write error\n");
}
} return ();
} [root@benxintuzi ipc]# ./coprocess ^C
[root@benxintuzi ipc]#

实例:将上述程序编译成为add2协同进程,然后下列程序创建了两个管道,父进程、子进程各自关闭了它们不需要的管道端,必须使用两个管道:一个用作协同进程的标准输入,另一个用作它的标准输出。然后子进程调用dup2使管道描述符移至其标准输入和标准输出,最后调用了excel执行add2:

 [root@benxintuzi ipc]# gcc coprocess.c -o add2
[root@benxintuzi ipc]# cat coprocess2.c
#include <unistd.h>
#include <signal.h>
#include <stdio.h> #define MAXLINE 1024 static void sig_pipe(int); /* our signal handler */ int main(void)
{
int n, fd1[], fd2[];
pid_t pid;
char line[MAXLINE]; if (signal(SIGPIPE, sig_pipe) == SIG_ERR)
printf("signal error\n"); if (pipe(fd1) < || pipe(fd2) < )
printf("pipe error\n"); if ((pid = fork()) < ) {
printf("fork error\n");
} else if (pid > ) { /* parent */
close(fd1[]);
close(fd2[]); while (fgets(line, MAXLINE, stdin) != NULL) {
n = strlen(line);
if (write(fd1[], line, n) != n)
printf("write error to pipe\n");
if ((n = read(fd2[], line, MAXLINE)) < )
printf("read error from pipe\n");
if (n == ) {
printf("child closed pipe\n");
break;
}
line[n] = ; /* null terminate */
if (fputs(line, stdout) == EOF)
printf("fputs error\n");
} if (ferror(stdin))
printf("fgets error on stdin\n");
exit();
} else { /* child */
close(fd1[]);
close(fd2[]);
if (fd1[] != STDIN_FILENO) {
if (dup2(fd1[], STDIN_FILENO) != STDIN_FILENO)
printf("dup2 error to stdin\n");
close(fd1[]);
} if (fd2[] != STDOUT_FILENO) {
if (dup2(fd2[], STDOUT_FILENO) != STDOUT_FILENO)
printf("dup2 error to stdout\n");
close(fd2[]);
}
if (execl("./add2", "add2", (char *)) < )
printf("execl error\n");
}
exit();
} static void sig_pipe(int signo)
{
printf("SIGPIPE caught\n");
exit();
} [root@benxintuzi ipc]# ./coprocess2

FIFO

FIFO有时被称为命名管道,未命名的管道只能在两个相关的进程之间使用,而且这两个相关的进程还要有一个共同的祖先进程。但是,通过FIFO,不相关的进程之间也能交换数据。

使用如下函数创建FIFO:

#include <sys/stat.h>

int mkfifo(const char* path, mode_t mode);

int mkfifoat(int fd, const char* path, mode_t mode);

返回值:成功,返回0;失败,返回-1

说明:

mkfifoat与mkfifo相似,像之前其他*at系列函数一样,有3种情形:

(1)   如果path参数指定了绝对路径名,则fd被忽略,此时mkfifoat和mkfifo一样。

(2)   如果path参数指定了相对路径名,则fd参数是一个打开目录的有效文件描述符,路径名和目录有关。

(3)   如果path参数指定了相对路径名,并且fd参数指定了AT_FDCWD,则路径名以当前目录开始,mkfifoat和mkfifo类似。

当我们使用mkfifo或者mkfifoat函数创建FIFO时,要用open打开,确是,正常的I/O函数(如close、read、write、unlink)都需要FIFO。当open一个FIFO时,非阻塞标志(O_NONBLOCK)会产生如下影响:

(1)   没有指定O_NONBLOCK时,只读open要阻塞到某个其他进程为写而打开这个FIFO为止。类似地,只写open要阻塞到某个其他进程为读而打开这个FIFO为止。

(2)   如果指定了P_NONBLOCK,则只读open立即返回。但是,如果没有进程为读而打开这个FIFO,那么只写open将返回-1,并将errno设置为ENXIO。

一个给定的FIFO有多个写进程是很常见的,这就意味着,如果不希望多个进程所写的数据交叉,则必须考虑原子写操作。和管道一样,常量PIPE_BUF说明了可被原子地写到FIFO的最大数据量。

FIFO主要有以下两种用途:

(1)   shell命令使用FIFO将数据从一条管道传送到另一条管道,无需创建中间临时文件。

实例:考虑这样一个过程,他需要对一个输入文件进行两次处理,示意图如下:

Linux 进程间通信(一)(经典IPC:管道、FIFO)

我们可以使用FIFO和tee命令如下处理:

mkfifo fifo1

prog3 < fifo1 &

prog1 < (输入文件) | tee fifo1 | prog2

执行流程如下:

Linux 进程间通信(一)(经典IPC:管道、FIFO)

(2)   客户进程-服务器进程应用程序中,FIFO用作汇聚点,在客户进程和服务器进程之间传递数据。

实例:有一个服务器进程,它与很多客户进程相关,每个客户进程都可将请求写到一个该服务器进程创建的FIFO中。由于该FIFO有多个写进程,因此客户进程每次发送给服务器的数据长度要小于PIPE_BUF字节,这样就能避免客户进程之间的写交叉。

Linux 进程间通信(一)(经典IPC:管道、FIFO)

但是这种类型的FIFO设计有问题,服务器如何回应各个客户进程呢?一种解决方法是,每个客户进程都在其请求中包含它的进程ID,然后服务器进程为每个客户进程创建一个FIFO,所使用的路径名是以客户进程的进程ID为基础的。例如,服务进程可以用名字/tmp/serv1.XXXXX创建FIFO,其中XXXXX被替换成客户进程的进程ID,如下图所示:

Linux 进程间通信(一)(经典IPC:管道、FIFO)

上一篇:C# MVC 5 - 生命周期(应用程序生命周期&请求生命周期)


下一篇:C# OracleHelper