环形划分
题目描述
有一个 \(n\) 个点的完全图,现在你要从中选取若干个三元环,使得这些三元环两两没有重边,并且使得不在三元环中的边数 \(\leq n-1\),请构造出一种方案。
\(n\leq 1000\)
解法
我们只需要写所有满足 \(i+j+k=0\bmod n\) 的三元环 \((i,j,k)\) 即可。
显然对于一对不同的 \(i,j\),仅有唯一的 \(k\) 满足上述条件,所以该构造不存在环与环之间的重边。
不合法的情况仅对于一对 \(i,j\),求出的 \(k\) 与其一相等。不妨设 \(2i+j=0\bmod n\),则 \(i,j\) 之间的边就不会被选,但是这样的情况最多有 \(n-1\) 种,因为 \(j=n\) 的时候一定没有对应的 \(i\)
如果你知道这个方法是怎么想到的,请告诉我
最小表示
题目描述
有一个长度为 \(n\) 的仅含前 \(m\) 个小写字符的串 \(S\),你希望知道这个串本质不同的子串有多少个。
定义两个子串本质不同当且仅当他们的最小表示法不同,最小表示指将该串最靠前出现的字符都替换为字符集的第一个字符,次靠前出现的字符都替换为字符集的第二个字符,以此类推。
\(n\leq 5\cdot 10^4,m\leq 10\)
解法
显然是重题:T3字符串
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
const int M = 100005;
#define int long long
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return f*x;
}
int n,a[M],p[M][26],lg[M];char s[M];
int x[M],y[M],c[M],sa[M],rk[M],dp[M][26];
vector<int> v[M];long long ans;
void init()
{
int m=n;
for(int i=1;i<=n;i++) c[x[i]=a[i]]++;
for(int i=1;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i>=1;i--) sa[c[x[i]]--]=i;
for(int k=1;k<n;k<<=1)
{
int num=0;
for(int i=n-k+1;i<=n;i++) y[++num]=i;
for(int i=1;i<=n;i++)
if(sa[i]>k) y[++num]=sa[i]-k;
for(int i=1;i<=m;i++) c[i]=0;
for(int i=1;i<=n;i++) c[x[i]]++;
for(int i=1;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i>=1;i--) sa[c[x[y[i]]]--]=y[i],y[i]=0;
swap(x,y);
num=x[sa[1]]=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
if(num==n) break;
m=num;
}
for(int i=1;i<=n;i++)
{
rk[sa[i]]=i;
if(i>1) lg[i]=lg[i>>1]+1;
}
int k=0;
for(int i=1;i<=n;i++)
{
int j=sa[rk[i]-1];
if(rk[i]==1) continue;
if(k) k--;
while(i+k<=n && j+k<=n && a[i+k]==a[j+k]) k++;
dp[rk[i]][0]=k;
}
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
}
int lcp(int l,int r)
{
l=rk[l];r=rk[r];
if(l>r) swap(l,r);l++;
int k=lg[r-l+1];
return min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int exlcp(int x,int y)//后缀x和后缀y的lcp
{
int l=0,l1=v[x].size()-1,l2=v[y].size()-1;
for(int i=0;i<l1 && i<l2;i++)
{
if(v[x][i]-x!=v[y][i]-y) break;//直接不等
l++;
int t=min(v[x][i+1]-v[x][i],v[y][i+1]-v[y][i])-1;
int tmp=lcp(v[x][i]+1,v[y][i]+1);
l+=min(tmp,t);
if(tmp<t) break;//达不到整段
}
return l;
}
bool cmp(int x,int y)
{
int l=exlcp(x,y),c1=0,c2=0;
if(l==n-x+1 || l==n-y+1)
return x>y;//长度小的放前边
if(p[x][s[x+l]-'a']==x+l) c1=n+1;
else c1=a[x+l];
if(p[y][s[y+l]-'a']==y+l) c2=n+1;
else c2=a[y+l];
//只要能决出胜负就行,因为不可能有两个特殊位置
return c1<c2;
}
signed main()
{
freopen("string.in","r",stdin);
freopen("string.out","w",stdout);
n=read();read();
scanf("%s",s+1);
//先把原串改写了
for(int i=1;i<=n;i++)
{
a[i]=i-p[0][s[i]-'a'];
p[0][s[i]-'a']=i;
}
init();//后缀数组
//找到这个位置后面第一个字符
for(int i=n;i>=1;i--)
{
for(int j=0;j<26;j++)
p[i][j]=p[i+1][j];
p[i][s[i]-'a']=i;
for(int j=0;j<26;j++)
if(p[i][j]) v[i].push_back(p[i][j]);
sort(v[i].begin(),v[i].end());
v[i].push_back(n+1);
}
for(int i=1;i<=n;i++) x[i]=i;
sort(x+1,x+1+n,cmp);
ans=1ll*n*(n+1)/2;
for(int i=2;i<=n;i++)
ans-=exlcp(x[i],x[i-1]);
printf("%lld\n",ans);
}
置换矩阵
题目描述
有一个长为 \(n\) 的序列 \(a\) 和一个长度为 \(n\) 的置换 \(p\),现在用他们生成出一个矩阵 \(A\):
- \(A_{1,j}=a_j\)
- \(A_{i,j}=A_{i-1,p_j}(i\geq 2)\)
求 \(A\) 的行列式,答案模 \(1e9+7\)
\(n\leq 5000\)
\(\tt subtask1:\) 排列 \(p\) 的环个数 \(>1\)
\(\tt subtask2:\) \(p_1=n,p_i=i-1(i>1)\)
解法
不难发现对于 \(\tt subtask1\) 的情况可以特判掉,答案就是 \(0\)
证明略过了,因为我也不是很清楚
对于任意置换 \(p\) 都可以较为容易地转成 \(\tt subtask2\) 的循环置换,那么我们就只讨论 \(p\) 为循环置换的情况:
\[A=\left(\begin{matrix}a_0&a_1&...&a_{n-1}\\ a_{n-1}&a_0&...&a_{n-2}\\ ...&...&...&...\\ a_1&a_2&...&a_0\end{matrix}\right) \]定义一个辅助矩阵 \(C\):
\[C=\left( \begin{matrix} 1&1&...&1\\ 1&w_n^1&...&w_{n}^{n-1}\\ 1&w_n^2&...&w_n^{2(n-1)}\\ ..&..&...&...\\ 1&w_n^{n-1}&...&w_{n}^{(n-1)^2} \end{matrix} \right) \]因为 \(C\) 为范德蒙德矩阵,所以可以这样算行列式:
\[\det(C)=\prod_{0\leq i<j<n}(w^j-w^i)\not=0 \]这里给出范德蒙德行列式的证明:
\[D=\left(\begin{matrix} 1&1&1&...&1\\ x_1&x_2&x_3&...&x_n\\ ...\\ x_1^{n-1}&x_2^{n-1}&x_3^{n-1}&...&x_n^{n-1} \end{matrix}\right)\\ = \]