A. 空间
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int main()
{
cout << 256 * 1024 * 1024 / 4 << endl;
return 0;
}
答案:67108864
B. 卡片
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int s[10];
bool check(int x)
{
while (x)
{
int t = x % 10;
x /= 10;
if ( -- s[t] < 0) return false;
}
return true;
}
int main()
{
for (int i = 0; i < 10; i ++ ) s[i] = 2021;
for (int i = 1; ; i ++ )
if (!check(i))
{
cout << i - 1 << endl;
return 0;
}
return 0;
}
答案:3181
C. 直线
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 200000;
int n;
struct Line
{
double k, b;
bool operator< (const Line& t) const
{
if (k != t.k) return k < t.k;
return b < t.b;
}
}l[N];
int main()
{
for (int x1 = 0; x1 < 20; x1 ++ )
for (int y1 = 0; y1 < 21; y1 ++ )
for (int x2 = 0; x2 < 20; x2 ++ )
for (int y2 = 0; y2 < 21; y2 ++ )
if (x1 != x2)
{
double k = (double)(y2 - y1) / (x2 - x1);
double b = y1 - k * x1;
l[n ++ ] = {k, b};
}
sort(l, l + n);
int res = 1;
for (int i = 1; i < n; i ++ )
if (fabs(l[i].k - l[i - 1].k) > 1e-8 || fabs(l[i].b - l[i - 1].b) > 1e-8)
res ++ ;
cout << res + 20 << endl;//注意加上开始的20条斜率为0的直线
return 0;
}
答案:40257
D:货物摆放
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
int main()
{
vector<LL> v;
LL n = 2021041820210418;
for(LL i = 1; i * i <= n; i ++ )
{
if(n % i == 0)
{
v.push_back(i);
if(n / i != i)v.push_back(n / i);//一次vector进入两个数,注意特判i * i = n的情况,
}
}
int res = 0;
for(auto a : v)
for(auto b : v)
for(auto c : v)
{
if(a * b * c == n)res ++;
}
cout << res << endl;
return 0;
}
答案:2430
E:路径
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2200, M = N * 50;
int n;
int h[N], e[M], w[M], ne[M], idx;
int q[N], dist[N];
bool st[N];
int gcd(int a, int b) // 欧几里得算法
{
return b ? gcd(b, a % b) : a;
}
void add(int a, int b, int c) // 添加一条边a->b,边权为c
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
void spfa() // 求1号点到n号点的最短路距离
{
int hh = 0, tt = 0;
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
q[tt ++ ] = 1;
st[1] = true;
while (hh != tt)
{
int t = q[hh ++ ];
if (hh == N) hh = 0;
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
{
q[tt ++ ] = j;
if (tt == N) tt = 0;
st[j] = true;
}
}
}
}
}
int main()
{
n = 2021;
memset(h, -1, sizeof h);
for (int i = 1; i <= n; i ++ )
for (int j = max(1, i - 21); j <= min(n, i + 21); j ++ )
{
int d = gcd(i, j);
add(i, j, i * j / d);//i * j / d 就是最小公倍数
}
spfa();
printf("%d\n", dist[n]);
return 0;
}
F:时间显示
略