Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:Follow up: If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n). Time: O(N)s = 7, nums = [2,3,1,2,4,3]
Output: 2 Explanation: the subarray[4,3]
has the minimal length under the problem constraint.
class Solution { public int minSubArrayLen(int s, int[] nums) { if (nums == null || nums.length == 0) { return 0; } int res = Integer.MAX_VALUE, start = 0, sum = 0; for(int i = 0; i < nums.length; i++) { sum += nums[i]; while (start <= i && sum >= s) { res = Math.min(res, i - start + 1); sum -= nums[start++]; } } return res == Integer.MAX_VALUE ? 0 : res; } }