一.进程控制块PCB-stack_struct
进程在操作系统中都有一个结构,用于表示这个进程。这就是进程控制块(PCB),在Linux中具体实现是task_struct数据结构,它主要记录了以下信息:
- 状态信息,例如可执行状态、就绪状态、阻塞状态等。
- 性质,由于unix有很多变种,进行有自己独特的性质。
- 资源,资源的链接比如内存,还有资源的限制和权限等。
- 组织,例如按照家族关系建立起来的树(父进程、子进程等)。
task_struct结构体内容非常庞大,暂时没有去分析源代码,以后有时间再去研究。
二.Linux fork执行的过程
在menu中添加一个fork的系统调用,然后用gdb开始调试.执行以下命令
qemu -kernel linux-3.18./arch/x86/boot/bzImage -initrd rootfs.img -s -s
gdb
file linux-3.18./vmlinux
target remote:
然后在sys_fork、sys_clone处设置断点,再逐步调试,观察fork系统调用的执行过程。
具体分析fork系统调用执行过程.
1.fork、vfork和clone三个系统调用都可以创建一个新进程,而且它们都是通过调用do_fork来实现进程的创建,do_fork通过传递不同的clone_flags来实现fork、clone、vfork。
long do_fork(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p;
int trace = ;
long nr; /*
1634 * Determine whether and which event to report to ptracer. When
1635 * called from kernel_thread or CLONE_UNTRACED is explicitly
1636 * requested, no event is reported; otherwise, report if the event
1637 * for the type of forking is enabled.
1638 */
if (!(clone_flags & CLONE_UNTRACED)) {
if (clone_flags & CLONE_VFORK)
trace = PTRACE_EVENT_VFORK;
else if ((clone_flags & CSIGNAL) != SIGCHLD)
trace = PTRACE_EVENT_CLONE;
else
trace = PTRACE_EVENT_FORK; if (likely(!ptrace_event_enabled(current, trace)))
trace = ;
}
1650
p = copy_process(clone_flags, stack_start, stack_size,
child_tidptr, NULL, trace); #进程复制,核心函数
/*
1654 * Do this prior waking up the new thread - the thread pointer
1655 * might get invalid after that point, if the thread exits quickly.
1656 */
if (!IS_ERR(p)) {
struct completion vfork;
struct pid *pid; trace_sched_process_fork(current, p); pid = get_task_pid(p, PIDTYPE_PID);
nr = pid_vnr(pid); if (clone_flags & CLONE_PARENT_SETTID)
put_user(nr, parent_tidptr); if (clone_flags & CLONE_VFORK) {
p->vfork_done = &vfork;
init_completion(&vfork);
get_task_struct(p);
} wake_up_new_task(p); /* forking complete and child started to run, tell ptracer */
if (unlikely(trace))
ptrace_event_pid(trace, pid); if (clone_flags & CLONE_VFORK) {
if (!wait_for_vfork_done(p, &vfork))
ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
} put_pid(pid);
} else {
nr = PTR_ERR(p);
}
return nr;
}
do_fork()函数的核心是copy_process(),该函数完成了进程创建的绝大部分。
/*
1175 * This creates a new process as a copy of the old one,
1176 * but does not actually start it yet.
1177 *
1178 * It copies the registers, and all the appropriate
1179 * parts of the process environment (as per the clone
1180 * flags). The actual kick-off is left to the caller.
1181 */static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid,
int trace)
{
int retval;
struct task_struct *p; if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL); if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
return ERR_PTR(-EINVAL); /*
1199 * Thread groups must share signals as well, and detached threads
1200 * can only be started up within the thread group.
1201 */
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL); /*
1206 * Shared signal handlers imply shared VM. By way of the above,
1207 * thread groups also imply shared VM. Blocking this case allows
1208 * for various simplifications in other code.
1209 */
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL); /*
1214 * Siblings of global init remain as zombies on exit since they are
1215 * not reaped by their parent (swapper). To solve this and to avoid
1216 * multi-rooted process trees, prevent global and container-inits
1217 * from creating siblings.
1218 */
if ((clone_flags & CLONE_PARENT) &&
current->signal->flags & SIGNAL_UNKILLABLE)
return ERR_PTR(-EINVAL); /*
1224 * If the new process will be in a different pid or user namespace
1225 * do not allow it to share a thread group or signal handlers or
1226 * parent with the forking task.
1227 */
if (clone_flags & CLONE_SIGHAND) {
if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
(task_active_pid_ns(current) !=
current->nsproxy->pid_ns_for_children))
return ERR_PTR(-EINVAL);
} retval = security_task_create(clone_flags);
if (retval)
goto fork_out; retval = -ENOMEM;
p = dup_task_struct(current); #为子进程创建一个新的内核栈,复制task_struct和thread_info结构,此时子进程的进程控制块和父进程完全一致。
if (!p)
goto fork_out; ftrace_graph_init_task(p); rt_mutex_init_task(p); #ifdef CONFIG_PROVE_LOCKING
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
retval = -EAGAIN;
if (atomic_read(&p->real_cred->user->processes) >=
task_rlimit(p, RLIMIT_NPROC)) {
if (p->real_cred->user != INIT_USER &&
!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
goto bad_fork_free;
}
current->flags &= ~PF_NPROC_EXCEEDED; retval = copy_creds(p, clone_flags);
if (retval < )
goto bad_fork_free; /*
1266 * If multiple threads are within copy_process(), then this check
1267 * triggers too late. This doesn't hurt, the check is only there
1268 * to stop root fork bombs.
1269 */
retval = -EAGAIN;
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count; if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count; delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
p->flags |= PF_FORKNOEXEC;
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
rcu_copy_process(p);
p->vfork_done = NULL;
spin_lock_init(&p->alloc_lock); init_sigpending(&p->pending); p->utime = p->stime = p->gtime = ;
....
通过dup_task_struct()函数,为子进程创建一个新的内核栈,复制task_struct和thread_info结构。
ti=alloc_thread_info_node(task,node);
tsk->stack=ti;
setup_thread_stack(tsk,orig); //这里只是复制了thread_info
重点关注下,fork()创建子进程后,父进程从系统调用中返回,而子进程从哪开始返回.
这主要是在copy_process()中copy_thread()代码.
int copy_thread(unsigned long clone_flags, unsigned long sp,
unsigned long arg, struct task_struct *p)
{
struct pt_regs *childregs = task_pt_regs(p);
struct task_struct *tsk;
int err; p->thread.sp = (unsigned long) childregs; #记录进程切换时的堆栈指针
p->thread.sp0 = (unsigned long) (childregs+);
memset(p->thread.ptrace_bps, , sizeof(p->thread.ptrace_bps)); if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, , sizeof(struct pt_regs));
p->thread.ip = (unsigned long) ret_from_kernel_thread;
task_user_gs(p) = __KERNEL_STACK_CANARY;
childregs->ds = __USER_DS;
childregs->es = __USER_DS;
childregs->fs = __KERNEL_PERCPU;
childregs->bx = sp; /* function */
childregs->bp = arg;
childregs->orig_ax = -;
childregs->cs = __KERNEL_CS | get_kernel_rpl();
childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
p->thread.io_bitmap_ptr = NULL;
return ;
}
*childregs = *current_pt_regs();#复制内核堆栈
childregs->ax = ; #这也是为什么子进程的fork返回0
if (sp)
childregs->sp = sp; p->thread.ip = (unsigned long) ret_from_fork; #子进程开始执行处
task_user_gs(p) = get_user_gs(current_pt_regs()); p->thread.io_bitmap_ptr = NULL;
tsk = current;
err = -ENOMEM; if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = ;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
} err = ; /*
184 * Set a new TLS for the child thread?
185 */
if (clone_flags & CLONE_SETTLS)
err = do_set_thread_area(p, -,
(struct user_desc __user *)childregs->si, ); if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = ;
}
return err;
}
然后回到do_fork()函数中,唤醒子进程并开始运行。至此,一个进程创建就完成了。
三.实验总结
中间虽然的很多细节还不是很清楚,但是对linux 创建子进程的大体流程有了一个宏观的认识,更加深刻地理解了底层Linux 内核进程运行的机制。