R语言dplyr包初探

 昨天学了一下R语言dplyr包,处理数据框还是很好用的。记录一下免得我忘记了... 先写一篇入门的,以后有空再写一篇详细的用法。

#dplyr learning
library(dplyr) #filter()
#选择符合条件的数据框的行,返回数据框
#Usage #filter(.data, ...) # ...为限制条件 #eg
filter(starwars, species == "Human")
filter(starwars, mass > 1000) # Multiple criteria
filter(starwars, hair_color == "none" & eye_color == "black")
filter(starwars, hair_color == "none" | eye_color == "black") # Multiple arguments are equivalent to and
filter(starwars, hair_color == "none", eye_color == "black") #默认为逻辑与 #arrange()
#给数据框排序
#Usage# #arrange(.data, ...) ## S3 method for class 'grouped_df'
#arrange(.data, ..., .by_group = FALSE) #eg
arrange(mtcars, cyl, disp) #先排cyl,再排disp
arrange(mtcars, desc(disp)) #desc() 降序 # grouped arrange ignores groups
by_cyl <- mtcars %>% group_by(cyl) # %>% 为管道函数,将左侧变量传给右侧函数的第一个参数
by_cyl %>% arrange(desc(wt)) #忽略分类,直接排序
# Unless you specifically ask:
by_cyl %>% arrange(desc(wt), .by_group = TRUE) #按照group分组排序 #select() # eg
iris <- as_tibble(iris) # so it prints a little nicer
select(iris, starts_with("Petal")) #选择以 'Petal' 开头的列
select(iris, ends_with("Width")) # Move Species variable to the front
select(iris, Species, everything()) df <- as.data.frame(matrix(runif(100), nrow = 10))
df <- tbl_df(df[c(3, 4, 7, 1, 9, 8, 5, 2, 6, 10)])
select(df, V4:V6) #切片
select(df, num_range("V", 4:6)) #这个还是好用的 # Drop variables with -
select(iris, -starts_with("Petal")) #去除以 'Petal' 开头的列 # The .data pronoun is available:
select(mtcars, .data$cyl) #这个用的不习惯
select(mtcars, .data$mpg : .data$disp) # Renaming -----------------------------------------
# * select() keeps only the variables you specify
select(iris, petal_length = Petal.Length) # * rename() keeps all variables
rename(iris, petal_length = Petal.Length) #重命名然后提取所有的列 #mutate() #添加新列
mtcars %>% as_tibble() %>% mutate(
cyl2 = cyl * 2,
cyl4 = cyl2 * 2
) mtcars %>% as_tibble() %>% mutate(
mpg = NULL, # 用 NULL 去除某列,类似于select 的 -
disp = disp * 0.0163871 # 对某列做运算
) # mutate() vs transmute --------------------------
# mutate() keeps all existing variables
mtcars %>%
mutate(displ_l = disp / 61.0237) # transmute keeps only the variables you create
mtcars %>%
transmute(displ_l = disp / 61.0237) #summarise()
#对 group_by 后的数据进行统计,这里以均值为例 mtcars %>%
summarise(mean = mean(disp), n = n()) mtcars %>%
group_by(cyl) %>%
summarise(mean = mean(disp), n = n()) mtcars %>%
group_by(cyl, vs) %>%
summarise(cyl_n = n(),mean_disp = mean(disp)) #这个分组统计很强大

  

 

  

上一篇:Pyhton开发【第五篇】:Python基础之杂货铺


下一篇:uva 10780