You are given a 0-indexed 1-dimensional (1D) integer array original
, and two integers, m
and n
. You are tasked with creating a 2-dimensional (2D) array with m
rows and n
columns using all the elements from original
.
The elements from indices 0
to n - 1
(inclusive) of original
should form the first row of the constructed 2D array, the elements from indices n
to 2 * n - 1
(inclusive) should form the second row of the constructed 2D array, and so on.
Return an m x n
2D array constructed according to the above procedure, or an empty 2D array if it is impossible.
Example 1:
Input: original = [1,2,3,4], m = 2, n = 2 Output: [[1,2],[3,4]] Explanation: The constructed 2D array should contain 2 rows and 2 columns. The first group of n=2 elements in original, [1,2], becomes the first row in the constructed 2D array. The second group of n=2 elements in original, [3,4], becomes the second row in the constructed 2D array.
Example 2:
Input: original = [1,2,3], m = 1, n = 3 Output: [[1,2,3]] Explanation: The constructed 2D array should contain 1 row and 3 columns. Put all three elements in original into the first row of the constructed 2D array.
Example 3:
Input: original = [1,2], m = 1, n = 1 Output: [] Explanation: There are 2 elements in original. It is impossible to fit 2 elements in a 1x1 2D array, so return an empty 2D array.
Constraints:
1 <= original.length <= 5 * 104
1 <= original[i] <= 105
1 <= m, n <= 4 * 104
将一维数组转变成二维数组。
给你一个下标从 0 开始的一维整数数组 original 和两个整数 m 和 n 。你需要使用 original 中 所有 元素创建一个 m 行 n 列的二维数组。
original 中下标从 0 到 n - 1 (都 包含 )的元素构成二维数组的第一行,下标从 n 到 2 * n - 1 (都 包含 )的元素构成二维数组的第二行,依此类推。
请你根据上述过程返回一个 m x n 的二维数组。如果无法构成这样的二维数组,请你返回一个空的二维数组。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/convert-1d-array-into-2d-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这是一道关于矩阵的模拟题,用心做即可。把一个一维矩阵转换成一个二维矩阵。注意这里的一个 corner case 是如果一维矩阵的长度不等于二维矩阵的面积的话,就返回一个空的矩阵即可。
时间O(n)
空间O(mn)
Java实现
1 class Solution { 2 public int[][] construct2DArray(int[] original, int m, int n) { 3 // corner case 4 if (original.length != m * n) { 5 return new int[0][0]; 6 } 7 8 // normal case 9 int[][] res = new int[m][n]; 10 for (int i = 0; i < original.length; i++) { 11 res[i / n][i % n] = original[i]; 12 } 13 return res; 14 } 15 }