bzoj2208

首先有向图的题目不难想到先tarjan缩点

一个强连通分量中的点的连通数显然是相等;

据说这样直接dfs就可以过了,但显然不够精益求精

万一给定的是一个完全的DAG图怎么办,dfs铁定超时;

首先想,dfs进行了很多不必要的操作,比如说i--->j

那么j的连通数一定也是i的连通数,但我们做dfs是需要做两遍的,降低了效率

那么为了提高效率,我们希望支持一个这样的操作

记录下每个点所能到的点,并且能快速的合并;

不由的想到位运算,但是最多只有30位,而实际有2000个点怎么办?

那我们就维护最多70个数,每个数表示到达情况

dp[k,i]为一个表示连通状况的数

第i个数的二进制上第j个位置(位置从右往左,0~30) 代表点k能否到达点(i-1)*30+j+1 (1代表可到达,0代表不可)

然后从出度为0的点不断dp即可;

具体见程序,表达不清,时间复杂度大约是O(nm/30) 还是非常优秀的

 type link=^node;
     node=record
       po:longint;
       next:link;
     end; var edge,way:array[..] of link;
    v,f:array[..] of boolean;
    be,count,dfn,low,st:array[..] of longint;
    dp:array[..,..] of longint;
    ans,s,state,h,t,l,x,y,i,j,n,m:longint;
    ch:ansistring;
    p:link; function min(a,b:longint):longint;
  begin
    if a>b then exit(b) else exit(a);
  end; procedure add(y:longint;var q:link);
  var p:link;
  begin
    new(p);
    p^.po:=y;
    p^.next:=q;
    q:=p;
  end; procedure tarjan(x:longint);
  var y:longint;
      p:link;
  begin
    p:=edge[x];
    v[x]:=true;
    f[x]:=true;
    inc(h);
    dfn[x]:=h;
    low[x]:=h;
    inc(t);
    st[t]:=x;
    while p<>nil do
    begin
      y:=p^.po;
      if not v[y] then
      begin
        tarjan(y);
        low[x]:=min(low[x],low[y]);
      end
      else if f[y] then
        low[x]:=min(low[x],low[y]);
      p:=p^.next;
    end;
    if low[x]=dfn[x] then
    begin
      inc(s);
      while st[t+]<>x do
      begin
        y:=st[t];
        f[y]:=false;
        be[y]:=s;
        inc(count[s]);
        dec(t);
      end;
    end;
  end; procedure merge(x,y:longint);   //合并点的连通情况
  var i,j:longint;
  begin
    for i:= to state do
      dp[x,i]:=dp[x,i] or dp[y,i];
  end; function get(x:longint):longint;  
  var i,j,r:longint;
  begin
    get:=;
    for i:= to state do  //穷举每个数
      for j:= to do   //穷举二进制的每一位
      begin
        r:= shl j;    //位运算的技巧
        if r>dp[x,i] then break;  
        if (dp[x,i] and r)<> then
          get:=get+count[(i-)*+j+]; 
      end;
  end; begin
  readln(n);
  for i:= to n do
  begin
    readln(ch);
    for j:= to n do
    begin
      x:=ord(ch[j])-;
      if x<> then add(j,edge[i]);
    end;
  end;
  for i:= to n do
    if not v[i] then
    begin
      h:=;
      t:=;
      tarjan(i);
    end;   fillchar(dfn,sizeof(dfn),);
  for i:= to n do
  begin
    p:=edge[i];
    while p<>nil do
    begin
      y:=p^.po;
      if be[y]<>be[i] then
      begin
        inc(dfn[be[i]]);      //计算出度
        add(be[i],way[be[y]]);   //缩点后记录点be[y]被那些点指向
      end;
      p:=p^.next;
    end;
  end;
  fillchar(v,sizeof(v),false);
  t:=;
  for i:= to s do
    edge[i]:=nil;
  for i:= to s do
  begin
    p:=way[i];
    while p<>nil do
    begin
      x:=p^.po;
      add(i,edge[x]);   //记录点i指向那些点
      p:=p^.next;
    end;
    x:=(i-) div +;
    y:=(i-) mod ;
    dp[i,x]:= shl y;   //每个点对自己都是可达的
  end;
  for i:= to s do
    if dfn[i]= then   //从出度为0的点开始dp
    begin
      inc(t);
      st[t]:=i;
    end;   state:=s div +;
  l:=;
  while l<=t do
  begin
    inc(l);
    x:=st[l];
    p:=edge[x];
    while p<>nil do
    begin
      y:=p^.po;
      merge(x,y);   //每个x指向的点的连通数一定也是x的连通数,合并
      p:=p^.next;
    end;
    ans:=ans+count[x]*get(x);  //计算连通数
    p:=way[x];
    while p<>nil do     //类似拓扑排序,删除点x,寻找新的出度为0的点
    begin
      y:=p^.po;
      dec(dfn[y]);
      if dfn[y]= then
      begin
        inc(t);
        st[t]:=y;
      end;
      p:=p^.next;
    end;
  end;
  writeln(ans);
end.
上一篇:四十六、MHA之binlog_server


下一篇:Chapter3_操作符_别名机制