poj2115 Looooops 扩展欧几里德的应用

好开心又做出一道,看样子做数论一定要先看书,认认真真仔仔细细的看一下各种重要的性质 及其用途,然后第一次接触的题目 边想边看别人的怎么做的,这样做出第一道题目后,后面的题目就完全可以自己思考啦

设要+t次,列出方程  c*t-p*2^k=b-a(p是一个正整数,这里的内存相当于一个长度为2^k的圆圈,满了就重来一圈)

这样子就符合扩展欧几里德的方程基本式了

然后令  c*t-p*2^k=gcd(c,2^k);

gcd=exgcd(c,t0,2^l,p0);

解出t0;那么t=t0*(b-a)/gcd;

那么答案救出来了

#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set> #define ll long long
#define LL __int64
#define eps 1e-8 //const ll INF=9999999999999; #define M 400000100 #define inf 0xfffffff using namespace std; //vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p; //vector<int>G[30012]; LL extgcd(LL a,LL &x,LL b,LL &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
LL r=extgcd(b,x,a%b,y);
LL t=x;
x=y;
y=t-a/b*y;
return r;
} int main(void)
{
LL a,b,c,k;
while(cin>>a>>b>>c>>k)
{
if(a+b+c+k == 0)
break;
LL MOD=(LL)1<<k;//这里要强制转化,坑了我好多遍,倒霉
LL t0,p0;
LL gcd=extgcd(c,t0,MOD,p0);
LL m=b-a;
if(m%gcd!=0)
{
puts("FOREVER");
continue;
}
LL t=(t0*m/gcd+MOD)%MOD;//这里一定要注意,最好每一道题目都加上MOD在模MOD,因为有可能t0值是负的
t=(t%(MOD/gcd)+(MOD/gcd))%(MOD/gcd);//这里要模的值要看清楚 是MODgcd,而不是MOD;
cout<<t<<endl;
}
}
上一篇:pt-query-digest 使用说明


下一篇:HDU2669 Romantic 扩展欧几里德 对我来说有陷阱