Luogu P3990 [SHOI2013]超级跳马

这道题还是一道比较不可做的矩阵题

首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移:

f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2*k+1]+f[i][j-2*k+1](1<=k<=i/2)

但这样是很慢的,然后我们就可以前缀和优化

这里有两种方法,一个是用奇偶数行进行讨论,还有一种我认为是比较清晰的也比较容易理解

我们先来看一张图:

Luogu  P3990 [SHOI2013]超级跳马

我们令f[i][j]表示前面可以转移到它的前缀和。例如图中的蓝色格子就是前6个格子的和

然后我们发现红色格子就是由蓝色格子+与它相近(i坐标差值为1)的3个黄色格子的值

然后就可以O(nm)求,但是这显然是过不了的

但是我们仔细研究一下发现每一次的转移都是等价的,所以我们用矩阵优化

由于每一列的值都和它前面两列有关,所以我们需要一个2*n*2*n的矩阵来转移,这个的话大概长这样(n=3时)

Luogu  P3990 [SHOI2013]超级跳马

具体还是看CODE吧,然后就是常规的矩阵快速幂

CODE

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=55,mod=30011;
int n,m;
struct Matrix
{
int n,m;
LL a[N<<1][N<<1];
inline void Dt_init(void)
{
register int i; memset(a,0,sizeof(a)); n>>=1;
for (i=1;i<=n;++i)
a[i][i+n]=a[i+n][i]=1;
for (i=1;i<=n;++i)
{
if (i^1) a[i][i-1]=1;
if (i^n) a[i][i+1]=1;
a[i][i]=1;
} n<<=1;
}
inline void cri_init(void)
{
register int i; memset(a,0,sizeof(a));
for (i=1;i<=n;++i)
a[i][i]=1;
}
};
inline Matrix mul(Matrix A,Matrix B)
{
Matrix C; C.n=A.n; C.m=B.m; memset(C.a,0,sizeof(C.a));
for (register int i=1;i<=C.n;++i)
for (register int j=1;j<=C.m;++j)
for (register int k=1;k<=A.m;++k)
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%mod;
return C;
}
inline Matrix quick_pow(Matrix A,int p)
{
Matrix T; T.n=T.m=A.n; T.cri_init();
while (p)
{
if (p&1) T=mul(T,A);
A=mul(A,A); p>>=1;
}
return T;
}
int main()
{
scanf("%d%d",&n,&m);
Matrix A; A.n=A.m=n<<1; A.Dt_init();
A=quick_pow(A,m-2);
printf("%lld",(A.a[n][1]+A.a[n-1][1])%mod);
return 0;
}
上一篇:[SHOI2008]cactus仙人掌图


下一篇:C语言之指针