[SHOI2008]cactus仙人掌图

【题目描述】

如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。

[SHOI2008]cactus仙人掌图

举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6,5,4)、(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两个的简单回路里。另外,第三张图也不是仙人图,因为它并不是连通图。显然,仙人图上的每条边,或者是这张仙人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图上两点之间的距离为这两点之间最短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1,你的任务是求出给定的仙人图的直径。

【输入格式】

输入的第一行包括两个整数n和m(1≤n≤50000)。其中n代表顶点个数,我们约定图中的顶点将从1到n编号。接下来一共有m行。代表m条路径。每行的开始有一个整数k,代表在这条路径上的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。

【输出格式】

只需输出一个数,这个数表示仙人图的直径长度。

【样例输入1】

15 3
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
5 2 14 9 15 10

【样例输出1】

8

【样例输入2】

10 1
10 1 2 3 4 5 6 7 8 9 10

【样例输出2】

9

【提示】

对第一个样例的说明:如图,6号点和12号点的最短路径长度为8,所以这张图的直径为8。

[SHOI2008]cactus仙人掌图

仙人掌是环形dp复杂度的保证,而此题直接告述我们

f[i]表示i的dfs序子树最长链

对于树:ans=max(ans,f[x]+f[v]+1),f[x]=max(f[x],f[v]+1)

当我们遇到一个环时

一个是顺序问题:从最高的根遍历整个环

对于f则只需更新这个环的顶部的f即可,因为这个子树已经处理完了,以后只会调用顶部的f值

一个图直观理解[SHOI2008]cactus仙人掌图

 for(int i=;i<=tot;i++)
f[root]=max(f[root],f[i]+min(i-,top-i+));

还有一个巨大的问题,就是没有统计经过环的边。如图:
[SHOI2008]cactus仙人掌图

用DP

ans=max(ans,f[i]+f[j]+j-i)

于是用单调队列

圆方树解法差不多,不过改变了树的结构,但在更多题目中有应用

圆方树http://immortalco.blog.uoj.ac/blog/1955

http://blog.xlightgod.com/%e3%80%90bzoj1023%e3%80%91%e3%80%90shoi2008%e3%80%91%e4%bb%99%e4%ba%ba%e6%8e%8c%e5%9b%be/

本题圆方树解法

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
int next,to;
}edge[];
int num,head[],dep[],fa[],a[],f[],q[],ans;
int dfn[],low[],cnt,n,m;
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
void DP(int x,int root)
{int top,i;
top=dep[x]-dep[root]+;
for (i=x;i!=root;i=fa[i])
a[top--]=f[i];
a[]=f[root];
top=dep[x]-dep[root]+;
for (i=;i<=top;i++)
a[top+i]=a[i];
int h,t;
h=;t=;
q[h]=;
for (i=;i<=top*;i++)
{
while (h<=t&&i-q[h]>top/) h++;
ans=max(ans,a[i]+i+a[q[h]]-q[h]);
while (h<=t&&a[q[t]]-q[t]<=a[i]-i) t--;
q[++t]=i;
}
for (i=;i<=top;i++)
f[root]=max(f[root],a[i]+min(top-i+,i-));
}
void dfs(int x)
{int i;
dfn[x]=low[x]=++cnt;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v!=fa[x])
{
if (dfn[v]==)
{
dep[v]=dep[x]+;
fa[v]=x;
dfs(v);
low[x]=min(low[v],low[x]);
}
else low[x]=min(low[x],dfn[v]);
if (dfn[x]<low[v])
{
ans=max(ans,f[x]+f[v]+);
f[x]=max(f[x],f[v]+);
}
}
}
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==fa[x]) continue;
if (fa[v]!=x&&dfn[v]>dfn[x])
DP(v,x);
}
}
int main()
{
int i,j,u,v,k,last,x;
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d",&k);
scanf("%d",&last);
for (j=;j<=k;j++)
{
scanf("%d",&x);
add(last,x);add(x,last);
last=x;
}
}
dep[]=;
dfs();
cout<<ans<<endl;
}

[SHOI2008]cactus仙人掌图

http://blog.xlightgod.com/%e3%80%90bzoj1023%e3%80%91%e3%80%90shoi2008%e3%80%91%e4%bb%99%e4%ba%ba%e6%8e%8c%e5%9b%be/

上一篇:[转] 插件兼容CommonJS, AMD, CMD 和 原生 JS


下一篇:Luogu P3990 [SHOI2013]超级跳马