官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot-missing-values-py
该例程是为了说明对缺失值的随即填充训练出的estimator表现优于直接删掉有缺失字段值的estimator
例程代码及附加注释如下:
---------------------------------------------
import numpy as np from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.model_selection import cross_val_score
# 设定随机数种子
rng = np.random.RandomState(0)
# 载入数据 波士顿房价
dataset = load_boston()
X_full, y_full = dataset.data, dataset.target
n_samples = X_full.shape[0]
n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values
# 随机森林--回归 random_state-随机种子 n_estimator 森林里树的数目
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
# 交叉验证分类器的准确率
score = cross_val_score(estimator, X_full, y_full).mean()
print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines
missing_rate = 0.75
n_missing_samples = int(np.floor(n_samples * missing_rate))
# hstack 把两个数组拼接起来-行数需要一致
missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples,
dtype=np.bool),
np.ones(n_missing_samples,
dtype=np.bool)))
# 打乱随机数组顺序
rng.shuffle(missing_samples)
missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values
X_filtered = X_full[~missing_samples, :]
y_filtered = y_full[~missing_samples]
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_filtered, y_filtered).mean()
print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values
X_missing = X_full.copy()
X_missing[np.where(missing_samples)[0], missing_features] = 0
y_missing = y_full.copy()
estimator = Pipeline([("imputer", Imputer(missing_values=0,
strategy="mean",
axis=0)),
("forest", RandomForestRegressor(random_state=0,
n_estimators=100))])
score = cross_val_score(estimator, X_missing, y_missing).mean()
print("Score after imputation of the missing values = %.2f" % score) ---------------------------------------------------
补充:
A. numpy.where()用法: