关键词:watchdog、soft lockup、percpu thread、lockdep等。
近日遇到一个soft lockup问题,打印类似“[ 56.032356] NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [cat:153]“。
这是lockup检测机制在起作用,lockup检测机制包括soft lockup detector和hard lockup detector。
借机分析下soft lockup机制以及什么情况下导致soft watchdog异常、对watchdog的配置、如何定位异常点。
这里跳过hard lockup detector的分析。
1. soft lockup机制分析
lockup_detector_init()函数首先获取sample_period以及watchdog_cpumask,然后根据情况创建线程,启动喂狗程序;创建hrtimer启动看门狗。
然后有两个重点一个是创建内核线程的API以及struct smp_hotplug_thread结构体。
void __init lockup_detector_init(void)
{
set_sample_period();----------------------------------------获取变量sample_period,为watchdog_thresh*2/5,即4秒喂一次狗。
...
cpumask_copy(&watchdog_cpumask, cpu_possible_mask); if (watchdog_enabled)
watchdog_enable_all_cpus();
} static int watchdog_enable_all_cpus(void)
{
int err = ; if (!watchdog_running) {----------------------------------如果当前watchdog_running没有再运行,那么为每个CPU创建一个watchdog/x线程,这些线程每隔sample_period时间喂一次狗。watchdog_threads时watchdog/x线程的主要输入参数,watchdog_cpumask规定了为哪些CPU创建线程。
err = smpboot_register_percpu_thread_cpumask(&watchdog_threads,
&watchdog_cpumask);
if (err)
pr_err("Failed to create watchdog threads, disabled\n");
else
watchdog_running = ;
} else {
err =update_watchdog_all_cpus(); if (err) {
watchdog_disable_all_cpus();
pr_err("Failed to update lockup detectors, disabled\n");
}
} if (err)
watchdog_enabled = ; return err;
} static void watchdog_disable_all_cpus(void)
{
if (watchdog_running) {
watchdog_running = ;
smpboot_unregister_percpu_thread(&watchdog_threads);
}
} static int update_watchdog_all_cpus(void)
{
int ret; ret =watchdog_park_threads();
if (ret)
return ret; watchdog_unpark_threads(); return ;
} static int watchdog_park_threads(void)
{
int cpu, ret = ; atomic_set(&watchdog_park_in_progress, ); for_each_watchdog_cpu(cpu) {
ret = kthread_park(per_cpu(softlockup_watchdog, cpu));---------------------------设置struct kthread->flags的KTHREAD_SHOULD_PARK位,在watchdog/x线程中会调用unpark成员函数进行处理。
if (ret)
break;
} atomic_set(&watchdog_park_in_progress, ); return ret;
} static void watchdog_unpark_threads(void)
{
int cpu; for_each_watchdog_cpu(cpu)
kthread_unpark(per_cpu(softlockup_watchdog, cpu));-------------------------------清空struct kthread->flags的KTHREAD_SHOULD_PARK位,在watchdog/x线程中会调用park成员函数。
}
1.1 watchdog_threads结构体介绍
在介绍如何创建watchdog/x线程之前,有必要先介绍一些struct smp_hotplug_thread线程。
struct smp_hotplug_thread {
struct task_struct __percpu **store;--------------------------存放percpu strcut task_strcut指针的指针。
struct list_head list;
int (*thread_should_run)(unsigned int cpu);-------检查是否应该运行watchdog/x线程。
void (*thread_fn)(unsigned int cpu);--------------watchdog/x线程的主函数。
void (*create)(unsigned int cpu);
void (*setup)(unsigned int cpu);------------------在运行watchdog/x线程之前的准备工作。
void (*cleanup)(unsigned int cpu, bool online);---在退出watchdog/x线程之后的清楚工作。
void (*park)(unsigned int cpu);-------------------当CPU offline时,需要临时停止。
void (*unpark)(unsigned int cpu);-----------------当CPU变成online时,进行准备工作。
cpumask_var_t cpumask;--------------------------------允许哪些CPU online。
bool selfparking;
const char *thread_comm;------------------------------watchdog/x线程名称。
};
watchdog_threads是soft lockup监控线程的实体,基于此创建 watchdog/x线程。
static struct smp_hotplug_thread watchdog_threads = {
.store = &softlockup_watchdog,
.thread_should_run =watchdog_should_run,
.thread_fn =watchdog,
.thread_comm = "watchdog/%u",
.setup =watchdog_enable,
.cleanup =watchdog_cleanup,
.park =watchdog_disable,
.unpark =watchdog_enable,
}; static void watchdog_enable(unsigned int cpu)
{
struct hrtimer *hrtimer = raw_cpu_ptr(&watchdog_hrtimer); /* kick off the timer for the hardlockup detector */
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrtimer->function =watchdog_timer_fn;------------------------------------------创建一个hrtimer,超时函数为watchdog_timer_fn,这里面会检查watchdog_touch_ts变量是否超过20秒没有被更新。如果是,则有soft lockup。 /* Enable the perf event */
watchdog_nmi_enable(cpu); /* done here because hrtimer_start can only pin to smp_processor_id() */
hrtimer_start(hrtimer, ns_to_ktime(sample_period),
HRTIMER_MODE_REL_PINNED);---------------------------------------------启动一个超时为sample_period(4秒)的hrtimer,HRTIMER_MODE_REL_PINNED表示此hrtimer和当前CPU绑定。 /* initialize timestamp */watchdog_set_prio(SCHED_FIFO, MAX_RT_PRIO - );---------------------------------设置当前线程为实时FIFO,并且优先级为实时99.这个优先级表示高于所有的非实时线程,但是实时优先级最低的。
__touch_watchdog();-------------------------------------------------------------更新watchdog_touch_ts变量,相当于喂狗操作。
} static void watchdog_set_prio(unsigned int policy, unsigned int prio)
{
struct sched_param param = { .sched_priority = prio }; sched_setscheduler(current, policy, ¶m);
} /* Commands for resetting the watchdog */
static void __touch_watchdog(void)
{
__this_cpu_write(watchdog_touch_ts, get_timestamp());----------------------------喂狗的操作就是更新watchdog_touch_ts变量,也即当前时间戳。
} static void watchdog_disable(unsigned int cpu)-------------------------------------相当于watchdog_enable()反操作,将线程恢复为普通线程;取消hrtimer。
{
struct hrtimer *hrtimer = raw_cpu_ptr(&watchdog_hrtimer); watchdog_set_prio(SCHED_NORMAL, );
hrtimer_cancel(hrtimer);
/* disable the perf event */
watchdog_nmi_disable(cpu);
} static void watchdog_cleanup(unsigned int cpu, bool online)
{
watchdog_disable(cpu);
} static int watchdog_should_run(unsigned int cpu)
{
return __this_cpu_read(hrtimer_interrupts) !=
__this_cpu_read(soft_lockup_hrtimer_cnt);------------------------------------hrtimer_interrupts记录了产生hrtimer的次数;在watchdog()中,将hrtimer_interrupts赋给soft_lockup_hrtimer_cnt。两者相等表示没有hrtimer产生,不需要运行watchdog/x线程;相反不等,则需要watchdog/x线程运行。
}
static void watchdog(unsigned int cpu)
{
__this_cpu_write(soft_lockup_hrtimer_cnt,
__this_cpu_read(hrtimer_interrupts));-----------------------------------更新soft_lockup_hrtimer_cnt,在watch_should_run()中就返回false,表示线程不需要运行,即不需要喂狗。
__touch_watchdog();--------------------------------------------------------------虽然就是一句话,但是却很重要的喂狗操作。 if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
watchdog_nmi_disable(cpu);
}
1.2 创建喂狗线程watchdog/x
在分析了watchdog_threads之后,再来看看如何创建watchdog/x线程。
int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
const struct cpumask *cpumask)
{
unsigned int cpu;
int ret = ; if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
return -ENOMEM;
cpumask_copy(plug_thread->cpumask, cpumask); get_online_cpus();
mutex_lock(&smpboot_threads_lock);
for_each_online_cpu(cpu) {------------------------------------------------遍历所有online CPU,为每个CPU创建一个percpu的watchdog/x线程。
ret =__smpboot_create_thread(plug_thread, cpu);
if (ret) {
smpboot_destroy_threads(plug_thread);-----------------------------创建失败则释放相关资源。
free_cpumask_var(plug_thread->cpumask);
goto out;
}
if (cpumask_test_cpu(cpu, cpumask))
smpboot_unpark_thread(plug_thread, cpu);--------------------------如果当前CPU不在cpumask中,则清空KTHREAD_SHOULD_PARK,进而调用watchdog_therads的umpark成员函数。
}
list_add(&plug_thread->list, &hotplug_threads);
out:
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
return ret;
} static int
__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
struct smpboot_thread_data *td; if (tsk)
return ; td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
if (!td)
return -ENOMEM;
td->cpu = cpu;
td->ht = ht; tsk =kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
ht->thread_comm);-----------------------------------------在指定CPU上创建watchdog/x线程,处理函数为smpboot_thread_fn()。
if (IS_ERR(tsk)) {
kfree(td);
return PTR_ERR(tsk);
}
/*
* Park the thread so that it could start right on the CPU
* when it is available.
*/
kthread_park(tsk);--------------------------------------------------------在CPU上立即启动watchdog/x线程。
get_task_struct(tsk);-----------------------------------------------------增加对线程的引用计数。
*per_cpu_ptr(ht->store, cpu) = tsk;---------------------------------------store存放线程结构体指针的指针。
if (ht->create) {
if (!wait_task_inactive(tsk, TASK_PARKED))
WARN_ON();
else
ht->create(cpu);
}
return ;
} static int smpboot_thread_fn(void *data)
{
struct smpboot_thread_data *td = data;
struct smp_hotplug_thread *ht = td->ht; while () {
set_current_state(TASK_INTERRUPTIBLE);
preempt_disable();
if (kthread_should_stop()) {----------------------------------------如果可以终止线程,调用cleanup,退出线程。
__set_current_state(TASK_RUNNING);
preempt_enable();
/* cleanup must mirror setup */
if (ht->cleanup && td->status != HP_THREAD_NONE)
ht->cleanup(td->cpu, cpu_online(td->cpu));
kfree(td);
return ;
} if (kthread_should_park()) {----------------------------------------如果KTHREAD_SHOULD_PARK置位,调用park()暂停进程执行。
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->park && td->status == HP_THREAD_ACTIVE) {
BUG_ON(td->cpu != smp_processor_id());
ht->park(td->cpu);
td->status = HP_THREAD_PARKED;
}
kthread_parkme();
/* We might have been woken for stop */
continue;
} BUG_ON(td->cpu != smp_processor_id()); /* Check for state change setup */
switch (td->status) {
case HP_THREAD_NONE:-----------------------------------------------相当于第一次运行,调用setup()进行初始化操作。
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->setup)
ht->setup(td->cpu);
td->status = HP_THREAD_ACTIVE;
continue; case HP_THREAD_PARKED:---------------------------------------------从parked状态恢复。
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->unpark)
ht->unpark(td->cpu);
td->status = HP_THREAD_ACTIVE;
continue;
} if (!ht->thread_should_run(td->cpu)) {-----------------------------如果不需要进程运行,schedule()主动放弃CPU给其他线程使用。
preempt_enable_no_resched();
schedule();
} else {
__set_current_state(TASK_RUNNING);
preempt_enable();
ht->thread_fn(td->cpu);----------------------------------------调用struct smpboot_thread_fn->thread_fn及watchdog(),进行喂狗操作。
}
}
} void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)----将创建的内核线程移除操作。
{
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
list_del(&plug_thread->list);
smpboot_destroy_threads(plug_thread);
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
free_cpumask_var(plug_thread->cpumask);
} static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
{
unsigned int cpu; /* We need to destroy also the parked threads of offline cpus */
for_each_possible_cpu(cpu) {
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); if (tsk) {
kthread_stop(tsk);
put_task_struct(tsk);
*per_cpu_ptr(ht->store, cpu) = NULL;
}
}
}
1.3 hrtimer看门狗
在分析了喂狗线程watchdog/x之后,再来分析看门狗是如何实现的?
看门狗是通过启动一个周期为4秒的hrtimer来实现的,这个hrtimer和CPU绑定,使用的变量都是percpu的。确保每个CPU之间不相互干扰。
每次hrtimer超时,都会唤醒watchdog/x线程,并进行一次喂狗操作。
因为hrtimer超时函数在软中断中调用,在中断产生后会比线程优先得到执行。
所以在watchdog/x线程没有得到执行的情况下,通过is_softlockup()来判断看门狗是否超过20秒没有得到喂狗。
static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
{
unsigned long touch_ts = __this_cpu_read(watchdog_touch_ts);
struct pt_regs *regs = get_irq_regs();
int duration;
int softlockup_all_cpu_backtrace = sysctl_softlockup_all_cpu_backtrace; if (atomic_read(&watchdog_park_in_progress) != )
return HRTIMER_NORESTART; /* kick the hardlockup detector */watchdog_interrupt_count();------------------------------------------------------------------没产生一次中断,hrtimer_interrupts计数加1.hrtimer_interrupts记录了产生hrtimer的次数。 /* kick the softlockup detector */
wake_up_process(__this_cpu_read(softlockup_watchdog));---------------------------------------唤醒watchdog/x线程,进行喂狗操作。 /* .. and repeat */
hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period));------------------------------------重新设置超时点,形成周期性时钟。
...
duration =is_softlockup(touch_ts);----------------------------------------------------------返回非0表示,看门狗超时。
if (unlikely(duration)) {--------------------------------------------------------------------看门狗超时情况的处理。
if (kvm_check_and_clear_guest_paused())
return HRTIMER_RESTART; /* only warn once */
if (__this_cpu_read(soft_watchdog_warn) == true) {
if (__this_cpu_read(softlockup_task_ptr_saved) !=
current) {
__this_cpu_write(soft_watchdog_warn, false);
__touch_watchdog();
}
return HRTIMER_RESTART;
} if (softlockup_all_cpu_backtrace) {
if (test_and_set_bit(, &soft_lockup_nmi_warn)) {
/* Someone else will report us. Let's give up */
__this_cpu_write(soft_watchdog_warn, true);
return HRTIMER_RESTART;
}
} pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",
smp_processor_id(), duration,
current->comm, task_pid_nr(current));-------------------------------------------------打印哪个CPU被卡死duration秒,以及死在哪个进程。
__this_cpu_write(softlockup_task_ptr_saved, current);
print_modules();
print_irqtrace_events(current);-----------------------------------------------------------显示开关中断、软中断信息,禁止中断和软中断也是造成soft lockup的一个原因。
if (regs)---------------------------------------------------------------------------------有寄存器显示寄存器信息,同时显示栈信息。
show_regs(regs);
else
dump_stack(); if (softlockup_all_cpu_backtrace) {
trigger_allbutself_cpu_backtrace(); clear_bit(, &soft_lockup_nmi_warn);
/* Barrier to sync with other cpus */
smp_mb__after_atomic();
} add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK);
if (softlockup_panic)---------------------------------------------------------------------如果定义softlockup_panic则进入panic()。
panic("softlockup: hung tasks");
__this_cpu_write(soft_watchdog_warn, true);
} else
__this_cpu_write(soft_watchdog_warn, false); return HRTIMER_RESTART;
}
static void watchdog_interrupt_count(void)
{
__this_cpu_inc(hrtimer_interrupts);
}
static int is_softlockup(unsigned long touch_ts)
{
unsigned long now = get_timestamp(); if ((watchdog_enabled & SOFT_WATCHDOG_ENABLED) && watchdog_thresh){
/* Warn about unreasonable delays. */
if (time_after(now, touch_ts + get_softlockup_thresh()))
return now - touch_ts;
}
return ;
}
2. 对watchdog的设置
对watchdog行为的设置有两个途径:通过命令行传入参数和通过proc设置。
2.1 通过命令行设置
通过命令行传入参数,可以对soft lockup进行开关设置、超时过后是否panic等等行为。
static int __init softlockup_panic_setup(char *str)
{
softlockup_panic = simple_strtoul(str, NULL, ); return ;
}
__setup("softlockup_panic=", softlockup_panic_setup); static int __init nowatchdog_setup(char *str)
{
watchdog_enabled = ;
return ;
}
__setup("nowatchdog", nowatchdog_setup); static int __init nosoftlockup_setup(char *str)
{
watchdog_enabled &= ~SOFT_WATCHDOG_ENABLED;
return ;
}
__setup("nosoftlockup", nosoftlockup_setup); #ifdef CONFIG_SMP
static int __init softlockup_all_cpu_backtrace_setup(char *str)
{
sysctl_softlockup_all_cpu_backtrace =
!!simple_strtol(str, NULL, );
return ;
}
__setup("softlockup_all_cpu_backtrace=", softlockup_all_cpu_backtrace_setup);
static int __init hardlockup_all_cpu_backtrace_setup(char *str)
{
sysctl_hardlockup_all_cpu_backtrace =
!!simple_strtol(str, NULL, );
return ;
}
__setup("hardlockup_all_cpu_backtrace=", hardlockup_all_cpu_backtrace_setup);
#endif
2.2 通过sysfs节点调节watchdog
watchdog相关的配置还可以通过proc文件系统进行配置。
/proc/sys/kernel/nmi_watchdog-------------------------hard lockup开关,proc_nmi_watchdog()。
/proc/sys/kernel/soft_watchdog------------------------soft lockup开关,proc_soft_watchdog()。
/proc/sys/kernel/watchdog-----------------------------watchdog总开关,proc_watchdog()。
/proc/sys/kernel/watchdog_cpumask---------------------watchdog cpumaks,proc_watchdog_cpumask()。
/proc/sys/kernel/watchdog_thresh----------------------watchdog超时阈值设置,proc_watchdog_thresh()。
3. 定位soft lockup异常
引起soft lockup的原因一般是死循环或者死锁, 死循环可以通过栈回溯找到问题点;死锁问题需要打开内核的lockdep功能。
打开内核的lockdep功能可以参考《Linux死锁检测-Lockdep》。
下面看一个while(1)引起的soft lockup异常分析:
[ 5656.032325] NMI watchdog: BUG: soft lockup - CPU# stuck for 22s! [cat:]-----------------------CPU、进程等信息粗略定位。
[ 5656.039314] Modules linked in:
[ 5656.042386]
[ 5656.042386] CURRENT PROCESS:
[ 5656.042386]
[ 5656.048229] COMM=cat PID=
[ 5656.051117] TEXT=-000c5a68 DATA=000c6f1c-000c7175 BSS=000c7175-000c8000
[ 5656.058432] USER-STACK=7fc1ee50 KERNEL-STACK=bd0b7080
[ 5656.058432]
[ 5656.065069] PC: 0x8032a1b2 (clk_summary_show+0x62/0xb4)--------------------------------------------PC指向出问题的点,更加精确的定位。
[ 5656.070302] LR: 0x8032a186 (clk_summary_show+0x36/0xb4)
[ 5656.075531] SP: 0xbd8b1b74...
[ 5656.217622]
Call Trace:-----------------------------------------------------------------------------------------通过Call Trace,可以了解如何做到PC指向的问题点的。来龙去脉一目了然。
[<80155c5e>] seq_read+0xc2/0x46c
[<802826ac>] full_proxy_read+0x58/0x98
[<8013239c>] do_readv_writev+0x31c/0x384
[<>] vfs_readv+0x54/0x8c
[<80160b52>] default_file_splice_read+0x166/0x2b0
[<801606ee>] do_splice_to+0x76/0xb0
[<801607de>] splice_direct_to_actor+0xb6/0x21c
[<801609c2>] do_splice_direct+0x7e/0xa8
[<80132a5a>] do_sendfile+0x21a/0x45c
[<>] SyS_sendfile64+0xf6/0xfc
[<>] csky_systemcall+0x96/0xe0