hdu 1754 I Hate It(线段树区间求最值)

I Hate It

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 57711    Accepted Submission(s):
22529

Problem Description
很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。
这让很多学生很反感。

不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。

 
Input
本题目包含多组测试,请处理到文件结束。
在每个测试的第一行,有两个正整数 N 和 M (
0<N<=200000,0<M<5000
),分别代表学生的数目和操作的数目。
学生ID编号分别从1编到N。
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
接下来有M行。每一行有一个字符
C (只取'Q'或'U')
,和两个正整数A,B。
当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。
 
Output
对于每一次询问操作,在一行里面输出最高成绩。
 
Sample Input
5 6
1 2 3 4 5
Q 1 5
U 3 6
Q 3 4
Q 4 5
U 2 9
Q 1 5
 
Sample Output
5
6
5
9
Hint

Huge input,the C function scanf() will work better than cin

 
Author
linle
 
Source
 
Recommend
lcy   |   We have carefully selected several similar
problems for you:  1698 1542 1394 2795 1540 
 
线段树入门基础题,每次更新结点存储该以结点为根的子树中最大值。
 
题意:中文题,很好理解。
 
附上代码:
 
 //线段树区间求最值
#include <iostream>
#include <cstdio>
#include <cstring>
#define M 200003
using namespace std; struct node
{
int l,r;
int n;
} ss[M*]; int max(int a,int b)
{
return a>b?a:b;
} void build(int l,int r,int k)
{
ss[k].l=l;
ss[k].r=r;
ss[k].n=;
if(l==r) return;
int mid=(l+r)/;
build(l,mid,k*);
build(mid+,r,k*+);
} void insert(int n,int d,int k)
{
if(ss[k].l==ss[k].r&&ss[k].l==d)
{
ss[k].n=n;
return;
}
int mid=(ss[k].l+ss[k].r)/;
if(d<=mid) insert(n,d,k*);
else insert(n,d,k*+);
ss[k].n=max(ss[k*].n,ss[k*+].n); //重点!!存储子树中的最大值
} int ans;
void search(int l,int r,int k)
{
if(ss[k].l==l&&ss[k].r==r)
{
ans=max(ans,ss[k].n);
return;
}
int mid=(ss[k].l+ss[k].r)/;
if(r<=mid) search(l,r,*k);
else if(l>mid) search(l,r,*k+);
else
{
search(l,mid,*k);
search(mid+,r,*k+);
}
} int main()
{
int n,m,i,j,t;
while(~scanf("%d%d",&n,&m))
{
build(,n,);
for(i=; i<=n; i++)
{
scanf("%d",&t);
insert(t,i,);
}
char c;
int a,b;
for(i=; i<=m; i++)
{
getchar(); //别忘了这个-.-
scanf("%c%d%d",&c,&a,&b);
if(c=='U')
insert(b,a,);
else
{
ans=;
search(a,b,);
printf("%d\n",ans);
}
}
}
return ;
}
上一篇:Latex排版工具的使用(一) 分类: Latex 2014-06-14 22:52 448人阅读 评论(0) 收藏


下一篇:Count the Colors-ZOJ1610(线段树区间求)