【实验】鸢尾花分类——简单的神经网络

import torch
from torch import nn
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt

X = torch.tensor(load_iris().data, dtype=torch.float32)  
y = torch.tensor(load_iris().target, dtype=torch.long)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

导入鸢尾花数据集,这里注意数据和标签类型的设置:dtype=torch.float32,dtype=torch.long,否则会报错

net = nn.Sequential(nn.Linear(4, 10), 
                    nn.ReLU(),
                    nn.Linear(10, 10),
                    nn.ReLU(),
                    nn.Linear(10, 3))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weights, std=0.01)

loss = nn.CrossEntropyLoss(reduction="none")      

trainer = torch.optim.Adam(net.parameters(), lr=0.05)

train_loss = []
test_loss = []
train_l = sum(loss(net(X_train), y_train)).detach().numpy()
test_l = sum(loss(net(X_test), y_test)).detach().numpy()
train_loss.append(train_l)
test_loss.append(test_l)

epochs = 1000

for i in range(epochs):
    trainer.zero_grad()
    l = sum(loss(net(X_train), y_train))
    l.backward()
    trainer.step()
    l = sum(loss(net(X), y))
    
    train_l = sum(loss(net(X_train), y_train)).detach().numpy()
    test_l = sum(loss(net(X_test), y_test)).detach().numpy()
    train_loss.append(train_l)
    test_loss.append(test_l)
epoch_index = range(epochs + 1)
plt.plot(epoch_index, train_loss, 'green', epoch_index, test_loss, 'blue')    
plt.show()

使用交叉熵损失函数时, 定义神经网络架构的时候不需要用Softmax !     (我一开始在神经网络最后一层加了nn.Softmax有报错)

关于交叉熵损失函数,nn.CrossEntropyLoss(),有一些需要注意的点

贴篇网上介绍的博客,后面看自己有没有时间总结下。https://blog.csdn.net/geter_CS/article/details/84857220

 

有些场合(例如用matplotlib绘图)需要用numpy的数组,使用能求梯度的tensor是会报错的!

这里用.detach().numpy()来完成,例子可以见上面的代码

 

实验结果:

【实验】鸢尾花分类——简单的神经网络

 

上一篇:GAN


下一篇:题解 P1345 【[USACO5.4]奶牛的电信Telecowmunication】