CF gym 101933 K. King's Colors(二项式反演)

传送门

##解题思路
  首先给出的树形态没用,因为除根结点外每个点只有一个父亲,它只需要保证和父亲颜色不同即可。设$f(k)$表示至多染了$k$种颜色的方案,那么$f(k)=(k-1)^{(n-1)}*k$,而我们要求的是恰好染$k$种颜色的方案数,设其为$g(k)$,易得

\[
g(k)=\sum\limits_{i=1}^k\dbinom{k}{i}f(i)
\]

发现这个可以二项式反演

\[
g(k)=\sum\limits_{i=1}^k(-1)^{k-i}\dbinom{n}{i}f(i)
\]

然后就可以直接算了。

##代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm> using namespace std;
const int N=2505;
const int MOD=1e9+7;
typedef long long LL; inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,k,f[N],ans,fac[N],inv[N]; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
} inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
} int main(){
n=rd(),k=rd();int x;fac[0]=1;
for(int i=1;i<n;i++) x=rd();
for(int i=1;i<=k;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[k]=fast_pow(fac[k],MOD-2);
for(int i=k-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
for(int i=2;i<=k;i++) f[i]=(LL)fast_pow(i-1,n-1)*i%MOD;
for(int i=1;i<=k;i++){
if(!((k-i)&1)) ans=ans+(LL)C(k,i)*f[i]%MOD;
else ans=ans+(MOD-(LL)C(k,i)*f[i]%MOD);
ans%=MOD;
}
printf("%d\n",ans);
return 0;
}
上一篇:Redis的安装和使用


下一篇:Android API中常用的包(转)