Matplotlib学习---用matplotlib画阶梯图(step plot)

这里利用Nathan Yau所著的《鲜活的数据:数据可视化指南》一书中的数据,学习画图。

数据地址:http://datasets.flowingdata.com/us-postage.csv

准备工作:先导入matplotlib和pandas,用pandas读取csv文件,然后创建一个图像和一个坐标轴

import pandas as pd
from matplotlib import pyplot as plt
postage=pd.read_csv(r"http://datasets.flowingdata.com/us-postage.csv")
fig,ax=plt.subplots()

先来看看这个数据文件:

   Year  Price
0 1991 0.29
1 1995 0.32
2 1999 0.33
3 2001 0.34
4 2002 0.37
5 2006 0.39
6 2007 0.41
7 2008 0.42
8 2009 0.44
9 2010 0.44

这个数据很简单,展示的是从1991年-2010年美国邮费的变化。

让我们来画一个阶梯图,展现邮费的变化过程。

阶梯图: ax.step(x,y)

代码如下:

import pandas as pd
from matplotlib import pyplot as plt
postage=pd.read_csv(r"http://datasets.flowingdata.com/us-postage.csv")
fig,ax=plt.subplots(figsize=(10,4)) ax.step(postage["Year"],postage["Price"],where='post')
ax.set_title("US Postage Fee") #设置标题
ax.set_xticks([i for i in postage["Year"]]) #设置x轴刻度
ax.set_yticks([]) #去除y轴刻度
#去除边框
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["right"].set_visible(False)
#添加文字注释
for i,j in zip(postage["Year"],postage["Price"]):
ax.text(x=i,y=j+0.003,s=j)
fig.tight_layout() plt.show()

图像如下:

Matplotlib学习---用matplotlib画阶梯图(step plot)

上一篇:springcloud ribbon 客户端负载均衡用法


下一篇:如何判断一个GPS点是否在以另一个GPS点为圆心100米为半径的圆内(Java代码)