【HBase】+Java+批量增查数据



https://help.aliyun.com/document_detail/43017.html?spm=a2c4g.11186623.6.762.22f87e748D8rpv

1、批量查询数据

import com.alicloud.openservices.tablestore.SyncClient;
import com.alicloud.openservices.tablestore.model.*;
import com.alicloud.openservices.tablestore.model.filter.SingleColumnValueFilter;

import java.util.List;

public class batchSearchData {
    /**
     * @param client
     * @param tableName      表名
     * @param primaryKeyName 主键名称
     * @param rowCount       要读取的行数
     * @param colName        要读取的列名称
     */
    private void batchGetRow(SyncClient client, String tableName, String primaryKeyName, int rowCount, List<String> colName) {
        MultiRowQueryCriteria multiRowQueryCriteria = new MultiRowQueryCriteria(tableName);
        // 加入要读取的行
        for (int i = 0; i < rowCount; i++) {
            PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
            primaryKeyBuilder.addPrimaryKeyColumn(primaryKeyName, PrimaryKeyValue.fromString("pk" + i));
            PrimaryKey primaryKey = primaryKeyBuilder.build();
            multiRowQueryCriteria.addRow(primaryKey);
        }
        // 添加条件
        multiRowQueryCriteria.setMaxVersions(1);
        for (int i = 0; i < colName.size(); i++) {
            multiRowQueryCriteria.addColumnsToGet(colName.get(i));
        }
        SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(colName.get(0),
                SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromLong(0));
        singleColumnValueFilter.setPassIfMissing(false);
        multiRowQueryCriteria.setFilter(singleColumnValueFilter);

        BatchGetRowRequest batchGetRowRequest = new BatchGetRowRequest();
        // batchGetRow支持读取多个表的数据, 一个multiRowQueryCriteria对应一个表的查询条件, 可以添加多个multiRowQueryCriteria.
        batchGetRowRequest.addMultiRowQueryCriteria(multiRowQueryCriteria);

        BatchGetRowResponse batchGetRowResponse = client.batchGetRow(batchGetRowRequest);

        System.out.println("是否全部成功:" + batchGetRowResponse.isAllSucceed());
        if (!batchGetRowResponse.isAllSucceed()) {
            for (BatchGetRowResponse.RowResult rowResult : batchGetRowResponse.getFailedRows()) {
                System.out.println("失败的行:" + batchGetRowRequest.getPrimaryKey(rowResult.getTableName(), rowResult.getIndex()));
                System.out.println("失败原因:" + rowResult.getError());
            }

            /**
             * 可以通过createRequestForRetry方法再构造一个请求对失败的行进行重试.这里只给出构造重试请求的部分.
             * 推荐的重试方法是使用SDK的自定义重试策略功能, 支持对batch操作的部分行错误进行重试. 设定重试策略后, 调用接口处即不需要增加重试代码.
             */
            BatchGetRowRequest retryRequest = batchGetRowRequest.createRequestForRetry(batchGetRowResponse.getFailedRows());
        }
    }
}

 

 

2、批量插入数据

待完善(要添加哪些列?造哪些列的数据)
import com.alicloud.openservices.tablestore.SyncClient;
import com.alicloud.openservices.tablestore.model.*;

public class batchWriteData {
    /**
     * @param client
     * @param tableName      表名
     * @param primaryKeyName 主键名称
     *                       备注:待完善(要添加哪些列?造哪些列的数据)
     */
    private void batchWriteRow(SyncClient client, String tableName, String primaryKeyName) {
        BatchWriteRowRequest batchWriteRowRequest = new BatchWriteRowRequest();

        // 构造rowPutChange1
        PrimaryKeyBuilder pk1Builder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
        pk1Builder.addPrimaryKeyColumn(primaryKeyName, PrimaryKeyValue.fromString("pk1"));
        RowPutChange rowPutChange1 = new RowPutChange(tableName, pk1Builder.build());
        // 添加一些列
        for (int i = 0; i < 10; i++) {
            rowPutChange1.addColumn(new Column("Col" + i, ColumnValue.fromLong(i)));
        }
        // 添加到batch操作中
        batchWriteRowRequest.addRowChange(rowPutChange1);

        // 构造rowPutChange2
        PrimaryKeyBuilder pk2Builder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
        pk2Builder.addPrimaryKeyColumn(primaryKeyName, PrimaryKeyValue.fromString("pk2"));
        RowPutChange rowPutChange2 = new RowPutChange(tableName, pk2Builder.build());
        // 添加一些列
        for (int i = 0; i < 10; i++) {
            rowPutChange2.addColumn(new Column("Col" + i, ColumnValue.fromLong(i)));
        }
        // 添加到batch操作中
        batchWriteRowRequest.addRowChange(rowPutChange2);

        // 构造rowUpdateChange
        PrimaryKeyBuilder pk3Builder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
        pk3Builder.addPrimaryKeyColumn(primaryKeyName, PrimaryKeyValue.fromString("pk3"));
        RowUpdateChange rowUpdateChange = new RowUpdateChange(tableName, pk3Builder.build());
        // 添加一些列
        for (int i = 0; i < 10; i++) {
            rowUpdateChange.put(new Column("Col" + i, ColumnValue.fromLong(i)));
        }
        // 删除一列
        rowUpdateChange.deleteColumns("Col10");
        // 添加到batch操作中
        batchWriteRowRequest.addRowChange(rowUpdateChange);

        // 构造rowDeleteChange
        PrimaryKeyBuilder pk4Builder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
        pk4Builder.addPrimaryKeyColumn(primaryKeyName, PrimaryKeyValue.fromString("pk4"));
        RowDeleteChange rowDeleteChange = new RowDeleteChange(tableName, pk4Builder.build());
        // 添加到batch操作中
        batchWriteRowRequest.addRowChange(rowDeleteChange);

        BatchWriteRowResponse response = client.batchWriteRow(batchWriteRowRequest);

        System.out.println("是否全部成功:" + response.isAllSucceed());
        if (!response.isAllSucceed()) {
            for (BatchWriteRowResponse.RowResult rowResult : response.getFailedRows()) {
                System.out.println("失败的行:" + batchWriteRowRequest.getRowChange(rowResult.getTableName(), rowResult.getIndex()).getPrimaryKey());
                System.out.println("失败原因:" + rowResult.getError());
            }
            /**
             * 可以通过createRequestForRetry方法再构造一个请求对失败的行进行重试.这里只给出构造重试请求的部分.
             * 推荐的重试方法是使用SDK的自定义重试策略功能, 支持对batch操作的部分行错误进行重试. 设定重试策略后, 调用接口处即不需要增加重试代码.
             */
            BatchWriteRowRequest retryRequest = batchWriteRowRequest.createRequestForRetry(response.getFailedRows());
        }
    }
}

 

上一篇:postgresql 删除所有表


下一篇:MongoDB