考虑分块,每块维护两个标记$ts,td$。
那么对于块中一个位置$i$,它的实际值为$i\times td+ts+v_i$。
修改的时候,对于整块,直接打标记,对于零散的暴力修改,然后重构凸壳,时间复杂度$O(\sqrt{n})$。
查询的时候在凸壳上二分即可,时间复杂度$O(\sqrt{n}\log n)$。
#include<cstdio>
#define N 100010
typedef long long ll;
int n,m,cnt,lim,i,op,x,y,pos[N],st[N],en[N],R[N],q[N];ll v[N],ts[N],td[N];
inline int read(){
char c;bool f=0;int a=0;
while(!((((c=getchar())>='0')&&(c<='9'))||(c=='-')));
if(c!='-')a=c-'0';else f=1;
while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';
if(f)a=-a;
return a;
}
inline double cross(int x,int y){return(double)(v[x]-v[y])/(double)(y-x);}
inline void build(int x){
int i,L=st[x],t=L;
q[t]=t;
for(i=t+1;i<=en[x];q[++t]=i++)while(t>L&&cross(i,q[t])<=cross(q[t],q[t-1]))t--;
R[x]=t;
}
inline void change(int x,int y,ll s,ll d){
if(pos[x]==pos[y]){
for(int i=x;i<=y;i++)v[i]+=s+d*i;
build(pos[x]);
return;
}
for(int i=pos[x]+1;i<pos[y];i++)ts[i]+=s,td[i]+=d;
for(int i=en[pos[x]];i>=x;i--)v[i]+=s+d*i;
build(pos[x]);
for(int i=st[pos[y]];i<=y;i++)v[i]+=s+d*i;
build(pos[y]);
}
inline void modify(int x,int y,ll z){
change(x,y,z*(1-x),z);
if(y<n)change(y+1,n,z*(y-x+1),0);
}
inline void up(ll&a,ll b){if(a<b)a=b;}
inline ll ask(int x){
int t=st[x],l=t+1,r=R[x],mid;
while(l<=r){
mid=(l+r)>>1;
if(cross(q[mid-1],q[mid])<td[x])l=(t=mid)+1;else r=mid-1;
}
return td[x]*q[t]+ts[x]+v[q[t]];
}
inline ll query(int x,int y){
ll t=-(1LL<<62);
if(pos[x]==pos[y]){
for(int i=x;i<=y;i++)up(t,td[pos[i]]*i+ts[pos[i]]+v[i]);
return t;
}
for(int i=pos[x]+1;i<pos[y];i++)up(t,ask(i));
for(int i=en[pos[x]];i>=x;i--)up(t,td[pos[i]]*i+ts[pos[i]]+v[i]);
for(int i=st[pos[y]];i<=y;i++)up(t,td[pos[i]]*i+ts[pos[i]]+v[i]);
return t;
}
int main(){
n=read();
for(i=1;i<=n;i++)v[i]=v[i-1]+read();
while(lim*lim*8<n)lim++;
for(i=1;i<=n;i++)pos[i]=(i-1)/lim+1;
cnt=pos[n];
for(i=1;i<=n;i++)en[pos[i]]=i;
for(i=n;i;i--)st[pos[i]]=i;
for(i=1;i<=cnt;i++)build(i);
m=read();
while(m--){
op=read(),x=read(),y=read();
if(!op)modify(x,y,read());else printf("%lld\n",query(x,y));
}
return 0;
}