『TensorFlow』项目资源分享

TF中文社区

TF_GOOGLE官方代码学习

1.TensorFlow-Slim

TF-Slim 是 tensorflow 较新版本的扩充包,可以简化繁杂的网络定义,其中也提供了一些demo:

  • AlexNet
  • InceptionV1/V2/V3
  • OverFeat
  • ResNet
  • VGG

例如 VGG-16 网络,寥寥数行就可以定义完毕:

def vgg16(inputs):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [2, 2], scope='pool5')
net = slim.fully_connected(net, 4096, scope='fc6')
net = slim.dropout(net, 0.5, scope='dropout6')
net = slim.fully_connected(net, 4096, scope='fc7')
net = slim.dropout(net, 0.5, scope='dropout7')
net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
return net

2.项目介绍

基于 TensorFlow 在手机端实现文档检测

风格迁移

机器学习:利用卷积神经网络实现图像风格迁移 (一)

机器学习:利用卷积神经网络实现图像风格迁移 (二)

机器学习:利用卷积神经网络实现图像风格迁移 (三)

3.开源代码

上一篇:CodeForces 681A A Good Contest (水题)


下一篇:Oracle中的三种Join 方式