从零认识XLA

  初识XLA

  XLA的全称是Accelerated Linear Algebra,即加速线性代数。作为一种深度学习编译器,长期以来被作为Tensorflow框架的一个试验特性被开发,历时至今已经超过两三年了,随着Tensorflow 2.X的发布,XLA也终于从试验特性变成了默认打开的特性。此外, Pytorch社区也在大力推动XLA在Pytorch下的开发,现在已经有推出PyTorch/XLA TPU版本,暂只支持谷歌平台TPU上使用。

  LLVM

  提到编译器就不得不提大名鼎鼎的LLVM。LLVM是一个编译器框架,由C++语言编写而成,包括一系列分模块、可重用的编译工具。

  LLVM框架的主要组成部分有:

  1、前端:负责将源代码转换为一种中间表示

  2、优化器:负责优化中间代码

  3、后端:生成可执行机器码的模块

从零认识XLA

 

  LLVM为不同的语言提供了同一种中间表示LLVM IR,这样子如果我们需要开发一种新的语言的时候,我们只需要实现对应的前端模块,如果我们想要支持一种新的硬件,我们只需要实现对应的后端模块,其他部分可以复用。

  XLA编译

  XLA也是基于LLVM框架开发的,前端的输入是Graph,前端没有将Graph直接转化为LLVM IR。首先XLA的功能主要体现在两个方面:

  1、即时编译(Just-in-time)

  2、超前编译(Aheda-of-time)

  无论是哪个功能,都是服务于以下目的:

  1、提高代码执行速度

  2、优化存储使用

  此外,XLA还有着                                                                                                     大部分深度学习编译器都有的梦想:摆脱计算库的限制,自动生成算子代码并支持在多硬件上的良好可移植性。

从零认识XLA

   作为编译器,XLA负责对前端定义的计算图进行优化。如上图所示,XLA的优化流程可以分成两方面,目标无关优化和目标相关优化。在优化步骤之间传递的是计算图的中间表示形式,HLO,即High Level Optimizer(高级优化器) ,XLA用这种中间表示形式表示正在被优化的计算图,其有自己的文法和语义,这里不做详细介绍

  XLA优势

  编译子计算图以减少短暂运算的执行时间,从而消除运行时的开销;融合流水线运算以降低内存开销;并针对已知张量形状执行专门优化以支持更积极的常量传播。

  提高内存使用率: 分析和安排内存使用,消除了许多中间存储缓冲区。

  降低对自定义运算的依赖:通过提高自动融合的低级运算的性能,使之达到手动融合的自定义运算的性能水平,从而消除对多种自定义运算的需求。

  提高便携性:使针对新颖硬件编写新后端的工作变得相对容易,在新硬件上运行时,大部分程序都能够以未经修改的方式运行。与针对新硬件专门设计各个整体运算的方式相比,这种模式不必重新编写 程序即可有效利用这些运算。

  XLA工作原理

  我们先来看XLA如何作用于计算图,下面是一张简单的计算图

从零认识XLA

  这里我们假设XLA仅支持matmul和add。XLA通过图优化方法,在计算图中找到适合被JIT编译的区域

从零认识XLA

   XLA把这个区域定义为一个Cluster,作为一个独立的JIT编译单元,计算图中通过Node Attribute标示

从零认识XLA

   然后另一个的图优化方法,把cluster转化成TensorFlow的一个Function子图。在原图上用一个Caller节点表示这个Function在原图的位置

  最后调用TensorFlow的图优化方法(BuildXlaOps),把Function节点转化成特殊的Xla节点。

  在TensorFlow运行时,运行到XlaCompile时,编译Xla cluster子图,然后把编译完的Executable可执行文件通过XlaExecutableClosure传给XlaRun运行。

  接着根据虚拟指令分配GPU Stream和显存,然后IrEmitter把HLO Graph转化成由编译器的中间表达LLVM IR表示的GPU Kernel。最后由LLVM生成nvPTX(Nvidia定义的虚拟底层指令表达形式)表达,进而由NVCC生成CuBin可执行代码。

  AOT和JIT

  JIT,动态(即时)编译,边运行边编译;AOT,指运行前编译。这两种编译方式的主要区别在于是否在“运行时”进行编译,对于AI训练模型中,AOT模式下更具有性能优势,具体流程如下图:

从零认识XLA

   对于大部分AI模型来说,训练过程一般情况下图是不会怎么变的,所以在训这样子就在执行过程中省略练的时候使用AOT模式能大大提高训练的速度

  Pytorch/XLA

  创建 XLA 张量:PyTorch/XLA 为 PyTorch 添加了新的 xla 设备类型。 此设备类型的工作方式与普通 PyTorch 设备类型一样。 例如,以下是创建和打印 XLA 张量的方法:

从零认识XLA

   这段代码应该看起来很熟悉。 PyTorch/XLA 使用与常规 PyTorch 相同的界面,但添加了一些内容。 导入 torch_xla 初始化 PyTorch/XLA,xm.xla_device() 返回当前的 XLA 设备。 这可能是 CPU 或 GPU,具体取决于您的环境。

  XLA 张量是 PyTorch 张量:PyTorch 操作可以在 XLA 张量上执行,就像 CPU 或 CUDA 张量一样。例如,XLA 张量可以相加:

从零认识XLA

   XLA 设备上运行模型:构建新的 PyTorch 网络或将现有网络转换为在 XLA 设备上运行只需要几行特定于 XLA 的代码,现阶段官方只支持JIT模式。 以图是在官方版本单个XLA设备上运行时代码段

从零认识XLA

   这段代码可以看出切换model在 XLA 上运行是多么容易。 model定义、数据加载器、优化器和训练循环可以在任何设备上工作。 唯一的 特别代码是获取 XLA device和mark step的几行代码。因为XLA tensor运行是lazy( 懒惰的)。 所以只在图形中记录操作,直到需要结果为止,调用 xm.mark_step() 才会执行其当前图获取运行结果并更新模型的参数。

上一篇:【安卓framework实战】使用lldb调试Android native源码


下一篇:#树形dp,树链剖分#CF442D Adam and Tree