Problem Statement
There is a directed graph GG with NN vertices and MM edges. The vertices are numbered 1,2,…,N1,2,…,N, and for each ii (1≤i≤M1≤i≤M), the ii-th directed edge goes from Vertex xixi to yiyi. GG does not contain directed cycles.
Find the length of the longest directed path in GG. Here, the length of a directed path is the number of edges in it.
Constraints
- All values in input are integers.
- 2≤N≤1052≤N≤105
- 1≤M≤1051≤M≤105
- 1≤xi,yi≤N1≤xi,yi≤N
- All pairs (xi,yi)(xi,yi) are distinct.
- GG does not contain directed cycles.
Input
Input is given from Standard Input in the following format:
NN MM x1x1 y1y1 x2x2 y2y2 :: xMxM yMyM
Output
Print the length of the longest directed path in GG.
Sample Input 1 Copy
Copy4 5 1 2 1 3 3 2 2 4 3 4
Sample Output 1 Copy
Copy3
The red directed path in the following figure is the longest:
Sample Input 2 Copy
Copy6 3 2 3 4 5 5 6
Sample Output 2 Copy
Copy2
The red directed path in the following figure is the longest:
Sample Input 3 Copy
Copy5 8 5 3 2 3 2 4 5 2 5 1 1 4 4 3 1 3
Sample Output 3 Copy
Copy3
The red directed path in the following figure is one of the longest:
#include <iostream> #include <vector> #include <algorithm> #include <string> #include <set> #include <queue> #include <map> #include <sstream> #include <cstdio> #include <cstring> #include <numeric> #include <cmath> #include <iomanip> #include <deque> #include <bitset> #include <unordered_set> #include <unordered_map> #define ll long long #define PII pair<int, int> #define rep(i,a,b) for(int i=a;i<=b;i++) #define dec(i,a,b) for(int i=a;i>=b;i--) using namespace std; int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } }; const long long INF = 0x7f7f7f7f7f7f7f7f; const int inf = 0x3f3f3f3f; const double pi = 3.14159265358979323846; const double eps = 1e-6; const int mod =1e9+7; const int N = 1e5+5; //if(x<0 || x>=r || y<0 || y>=c) inline ll read() { ll x = 0; bool f = true; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); } while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); return f ? x : -x; } ll gcd(ll m, ll n) { return n == 0 ? m : gcd(n, m % n); } ll lcm(ll m, ll n) { return m * n / gcd(m, n); } bool prime(int x) { if (x < 2) return false; for (int i = 2; i * i <= x; ++i) { if (x % i == 0) return false; } return true; } ll qpow(ll m, ll k, ll mod) { ll res = 1, t = m; while (k) { if (k & 1) res = res * t % mod; t = t * t % mod; k >>= 1; } return res; } int main() { int n, m; cin >> n >> m; vector<vector<int>> a(n+1); vector<int> in(n + 1),dp(n+1); rep(i, 1, m) { int u, v; cin >> u >> v; a[u].push_back(v); in[v]++; } queue<int> q; rep(i, 1, n) { if (!in[i]) q.push(i); } while (!q.empty()) { int f = q.front(); q.pop(); for (int i = 0; i < a[f].size(); i++) { int to = a[f][i]; in[to]--; if (!in[to]) { dp[to] = dp[f] + 1; q.push(to); } } } int ans = 0; for (int i = 1; i <= n; i++) ans = max(ans, dp[i]); cout << ans << endl; return 0; }