An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2 lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
#include <iostream> #include <vector> #include <stack> #include <cstring> using namespace std; vector<int> pre,in,post,val; void postorder(int root,int start,int end){ if(start>end) return ; int root_index=0; while(root_index<=end&&in[root_index]!=pre[root]) root_index++; postorder(root+1,start,root_index-1); postorder(root+1+root_index-start,root_index+1,end); post.push_back(pre[root]); } int main() { stack<int> sta; int k=0,N; char ch[5];int num; scanf("%d",&N); while(~scanf("%s",&ch)){ if(strlen(ch)==4) { scanf("%d",&num); pre.push_back(num); sta.push(num); }else{ in.push_back(sta.top()); sta.pop(); if(in.size()==N) break; } } postorder(0,0,N-1); for(int i=0;i<N;i++) if(i!=N-1) printf("%d ",post[i]); else printf("%d",post[i]); system("pause"); return 0; }