数据包
百度网盘
链接:https://pan.baidu.com/s/1v9M3jNdT4vwsqup9N0mGOA
提取码:hs9c
复制这段内容后打开百度网盘手机App,操作更方便哦
1、 数据清洗说明:
(1) 第一列是时间;
(2) 第二列是卖出方;
(3) 第三列是买入方;
(4) 第四列是票的数量;
(5) 第五列是金额。
卖出方,买入方一共三个角色,机场(C开头),代理人(O开头)和一般顾客(PAX)
2、 数据清洗要求:
(1)统计最繁忙的机场Top10(包括买入卖出);
(2)统计最受欢迎的航线;(起点终点一致(或相反))
(3)统计最大的代理人TOP10;
(4)统计某一天的各个机场的卖出数据top10。
3、 数据可视化要求:
(1)上述四中统计要求可以用饼图、柱状图等显示;
(2)可用关系图展示各个机场之间的联系程度(以机票数量作为分析来源)。
实验关键部分代码(列举统计最繁忙机场的代码,其他代码大同小异):
数据初步情理,主要是过滤出各个机场个总票数
1. package mapreduce;
2. import java.io.IOException;
3. import java.net.URI;
4. import org.apache.hadoop.conf.Configuration;
5. import org.apache.hadoop.fs.Path;
6. import org.apache.hadoop.io.LongWritable;
7. import org.apache.hadoop.io.Text;
8. import org.apache.hadoop.mapreduce.Job;
9. import org.apache.hadoop.mapreduce.Mapper;
10. import org.apache.hadoop.mapreduce.Reducer;
11. import org.apache.hadoop.mapreduce.lib.chain.ChainMapper;
12. import org.apache.hadoop.mapreduce.lib.chain.ChainReducer;
13. import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
14. import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
15. import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
16. import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
17. import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
18. import org.apache.hadoop.fs.FileSystem;
19. import org.apache.hadoop.io.IntWritable;
20. public class ChainMapReduce {
21. private static final String INPUTPATH = "hdfs://localhost:9000/mapreducetest/region.txt";
22. private static final String OUTPUTPATH = "hdfs://localhost:9000/mapreducetest/out1";
23. public static void main(String[] args) {
24. try {
25. Configuration conf = new Configuration();
26. FileSystem fileSystem = FileSystem.get(new URI(OUTPUTPATH), conf);
27. if (fileSystem.exists(new Path(OUTPUTPATH))) {
28. fileSystem.delete(new Path(OUTPUTPATH), true);
29. }
30. Job job = new Job(conf, ChainMapReduce.class.getSimpleName());
31. FileInputFormat.addInputPath(job, new Path(INPUTPATH));
32. job.setInputFormatClass(TextInputFormat.class);
33. ChainMapper.addMapper(job, FilterMapper1.class, LongWritable.class, Text.class, Text.class, IntWritable.class, conf);
34. ChainReducer.setReducer(job, SumReducer.class, Text.class, IntWritable.class, Text.class, IntWritable.class, conf);
35. job.setMapOutputKeyClass(Text.class);
36. job.setMapOutputValueClass(IntWritable.class);
37. job.setPartitionerClass(HashPartitioner.class);
38. job.setNumReduceTasks(1);
39. job.setOutputKeyClass(Text.class);
40. job.setOutputValueClass(IntWritable.class);
41. FileOutputFormat.setOutputPath(job, new Path(OUTPUTPATH));
42. job.setOutputFormatClass(TextOutputFormat.class);
43. System.exit(job.waitForCompletion(true) ? 0 : 1);
44. } catch (Exception e) {
45. e.printStackTrace();
46. }
47. }
48. public static class FilterMapper1 extends Mapper<LongWritable, Text, Text, IntWritable> {
49. private Text outKey = new Text();
50. private IntWritable outValue = new IntWritable();
51. @Override
52. protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
53. throws IOException,InterruptedException {
54. String line = value.toString();
55. if (line.length() > 0) {
56. String[] arr = line.split(",");
57. int visit = Integer.parseInt(arr[3]);
58. if(arr[1].substring(0, 1).equals("C")||arr[2].substring(0, 1).equals("C")){
59. outKey.set(arr[1]);
60. outValue.set(visit);
61. context.write(outKey, outValue);
62. }
63. }
64. }
65. }
66.
67. public static class SumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
68. private IntWritable outValue = new IntWritable();
69. @Override
70. protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context)
71. throws IOException, InterruptedException {
72. int sum = 0;
73. for (IntWritable val : values) {
74. sum += val.get();
75. }
76. outValue.set(sum);
77. context.write(key, outValue);
78. }
79. }
80.
81.
82. }
数据二次清理,进行排序
package mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class OneSort {
public static class Map extends Mapper<Object , Text , IntWritable,Text >{
private static Text goods=new Text();
private static IntWritable num=new IntWritable();
public void map(Object key,Text value,Context context) throws IOException, InterruptedException{
String line=value.toString();
String arr[]=line.split("\t");
num.set(Integer.parseInt(arr[1]));
goods.set(arr[0]);
context.write(num,goods);
}
}
public static class Reduce extends Reducer< IntWritable, Text, IntWritable, Text>{
private static IntWritable result= new IntWritable();
public void reduce(IntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException{
for(Text val:values){
context.write(key,val);
}
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{
Configuration conf=new Configuration();
Job job =new Job(conf,"OneSort");
job.setJarByClass(OneSort.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
Path in=new Path("hdfs://localhost:9000/mapreducetest/out1/part-r-00000");
Path out=new Path("hdfs://localhost:9000/mapreducetest/out2");
FileInputFormat.addInputPath(job,in);
FileOutputFormat.setOutputPath(job,out);
System.exit(job.waitForCompletion(true) ? 0 : 1); }
}
从hadoop中读取文件
package mapreduce; import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.ArrayList;
import java.util.List; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path; public class ReadFile {
public static List<String> ReadFromHDFS(String file) throws IOException
{
//System.setProperty("hadoop.home.dir", "H:\\文件\\hadoop\\hadoop-2.6.4");
List<String> list=new ArrayList();
int i=0;
Configuration conf = new Configuration();
StringBuffer buffer = new StringBuffer();
FSDataInputStream fsr = null;
BufferedReader bufferedReader = null;
String lineTxt = null; try
{
FileSystem fs = FileSystem.get(URI.create(file),conf);
fsr = fs.open(new Path(file));
bufferedReader = new BufferedReader(new InputStreamReader(fsr));
while ((lineTxt = bufferedReader.readLine()) != null)
{
String[] arg=lineTxt.split("\t");
list.add(arg[0]);
list.add(arg[1]);
}
} catch (Exception e)
{
e.printStackTrace();
} finally
{
if (bufferedReader != null)
{
try
{
bufferedReader.close();
} catch (IOException e)
{
e.printStackTrace();
}
}
}
return list; } public static void main(String[] args) throws IOException {
List<String> ll=new ReadFile().ReadFromHDFS("hdfs://localhost:9000/mapreducetest/out2/part-r-00000");
for(int i=0;i<ll.size();i++)
{
System.out.println(ll.get(i));
} } }
前台网页代码
<%@page import="mapreduce.ReadFile"%>
<%@page import="java.util.List"%>
<%@page import="java.util.ArrayList"%>
<%@page import="org.apache.hadoop.fs.FSDataInputStream" %>
<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Insert title here</title>
<% List<String> ll= ReadFile.ReadFromHDFS("hdfs://localhost:9000/mapreducetest/out2/part-r-00000");%>
<script src="../js/echarts.js"></script>
</head>
<body>
<div id="main" style="width: 900px;height:400px;"></div>
<script type="text/javascript">
// 基于准备好的dom,初始化echarts实例
var myChart = echarts.init(document.getElementById('main')); // 指定图表的配置项和数据
var option = {
title: {
text: '最繁忙的机场TOP10'
},
tooltip: {},
legend: {
data:['票数']
},
xAxis: {
data:["<%=ll.get(ll.size()-1)%>"<%for(int i=ll.size()-3;i>=ll.size()-19;i--){
if(i%2==1){
%>,"<%=ll.get(i)%>"
<%
}
}
%>] },
yAxis: {},
series: [{
name: '票数',
type: 'bar',
data: [<%=ll.get(ll.size()-2)%>
<%for(int i=ll.size()-1;i>=ll.size()-19;i--){
if(i%2==0){
%>,<%=ll.get(i)%>
<%
}
}
%>]
}]
}; // 使用刚指定的配置项和数据显示图表。
myChart.setOption(option);
</script>
<h2 color="red"><a href="NewFile.jsp">返回</a></h2>
</body>
结果截图: