[抄题]:
Given two integers L
and R
, find the count of numbers in the range [L, R]
(inclusive) having a prime number of set bits in their binary representation.
(Recall that the number of set bits an integer has is the number of 1
s present when written in binary. For example, 21
written in binary is 10101
which has 3 set bits. Also, 1 is not a prime.)
Example 1:
Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
不知道怎么统计二进制数量:右移1就行了。
质数就那么些,枚举就行了。存不存在都放在set里。
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
往右移一位要配合&1,才能取出最后一位。
for (int i = num; i > 0; i >>= 1)
bits += i & 1;
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
质数可以单独拿出来做成set
Set<Integer> set = new HashSet<>(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
[复杂度]:Time complexity: O(n) Space complexity: O(n)
[算法思想:迭代/递归/分治/贪心]:
[关键模板化代码]:
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
[潜台词] :
//L = 6, R = 10
class Solution {
public int countPrimeSetBits(int L, int R) {
//corner case
if (L == R) return 0; //initialization:set
Set<Integer> set = new HashSet<>(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
int count = 0; //for loop from l to right, add to count
for (int num = L; num <= R; num++) {
//count the bits
int bits = 0;
for (int i = num; i > 0; i >>= 1)
bits += i & 1;
count = set.contains(bits) ? count + 1 : count;
} return count;
}
}