第一周学习总结

第一周学习总结

  • Maximum Classififier Discrepancy for Unsupervised Domain Adaptation

论文小结

一、《Maximum Classififier Discrepancy for Unsupervised Domain Adaptation

1、Method

  • 使用两个分类器(F1,F2),去寻找在Target中判定错误的区域。
    第一周学习总结

2、Training Steps

  • Step A

    • train both classififiers and generator to classify the source samples correctly.

    • 损失函数

      • L ( X S , Y S ) = − E ( x S , y s ) − ( X S , Y S ) ∑ k = 1 K 1 [ k = y S ] l o g p ( y ∣ x S ) L(X_S,Y_S) = -E_{(x_S,y_s)-(X_S,Y_S)}\sum^{K}_{k=1}{1_{[k=y_S]}logp(y|x_S)} L(XS​,YS​)=−E(xS​,ys​)−(XS​,YS​)​k=1∑K​1[k=yS​]​logp(y∣xS​)

      • m i n G , F 1 , F 2 L ( X S , Y S ) min_{G,F1,F2} L(X_S,Y_S) minG,F1,F2​L(XS​,YS​)

  • Step B

  • 第一周学习总结

  • 损失函数

    • m i n F 1 , F 2 L ( X S , Y S ) − L a d v ( X t ) min_{F1,F2} L(X_S,Y_S) - L_{adv}(X_t) minF1,F2​L(XS​,YS​)−Ladv​(Xt​)

    • L a d v ( X t ) = E x t − X t [ d ( p 1 ( y ∣ x t ) , p 2 ( y ∣ x t ) ) ] L_{adv}(X_t)=E_{x_t-X_t}{[d{(p_1(y|x_t),p_2(y|x_t))}]} Ladv​(Xt​)=Ext​−Xt​​[d(p1​(y∣xt​),p2​(y∣xt​))]

  • Step C

    -第一周学习总结

    • 损失函数

      • m i n G L a d v ( X t ) min_{G} L_{adv}(X_t) minG​Ladv​(Xt​)

3、Experiments on Classifification

  • 结果图

第一周学习总结

  • 参数设置

    • Optim: Adam

    • Learning rate: 0.0002

    • batch size : 128

    • hyper-parameter : num_k (2 - 4)

论文复现

  • Maximum Classififier Discrepancy for Unsupervised Domain Adaptation

一、源码分析

1. 网络模型

  • svhn to mnist(model)

    • G: conv1 => bn1 => max_pool

      ​ => conv2 => bn2 => max_pool

      ​ => conv3 => bn3 =>

      ​ => fc1 => bn1_fc => dropout

      ​ => out

    • F:fc1 = > bn1_fc => fc2 = > bn2_fc => fc3 = > bn3_fc =>out

    • 不太明白的地方

      • 在F结构中的forward加了一个reverse的选项。

第一周学习总结

- grad_reverse函数

第一周学习总结

  • syn to gtsrb

    • G: conv1 => bn1 => max_pool

      ​ => conv2 => bn2 => max_pool

      ​ => conv3 => bn3 => max_pool

      ​ => view(拉平)

      ​ => out

    • F: => fc2 = > bn2_fc => fc3 = > bn3_fc => out

  • usps

    • G: conv1 => bn1 => max_pool

      ​ => conv2 => bn2 => max_pool

      ​ => view(拉平)

      ​ => out

    • F: fc1 = > bn1_fc => fc2 = > bn2_fc => fc3 = > bn3_fc => out

二、实验结果

METHOD SVHN to MNIST SYNSIG to GTSRB MNIST to USPS USPS to MNIST
Source Only 70.1 92.5 68.6 58.3
MCD(n = 4) 95.52 ± 0.58 95.75 ± 0.46 94.06 ± 0.36 96.79 ± 0.31
上一篇:深度学习二、CNN(卷积神经网络)概念及理论


下一篇:IDE、SATA、SCSI、SAS、FC、SSD 硬盘类型