看了眼题目和数据范围\(n \leq 20,k \leq 6\)自然想到了\(dfs\)分组求解,主要是被这道题坑自闭过。
然而硬来\(dfs\)肯定会被蜜汁\(T\)掉,因为暴力\(n\)个数所在集合要跑\(n^k\)次。
于是又瞎猜了个贪心,即每次找到当前最小的集合\(p\),将\(A_i\)放置集合\(p\)。
接着被我随脚出的一个数据愉快的\(hack\)掉了。
然后就突然想到了\(randomShuffle\)随机数大法
因为\(n\)个数是按顺序放置集合的,那么能不能考虑将这个数列多打乱几次从而枚举出不同的顺序\(?\)
简单权衡一下,整个贪心复杂度是\(O(nk)\)的,那么如果我们随机打乱数列\(T\)次,也就大大增加了贪心准确的概率。总复杂度\(O(nkT)\)。
测了一下,\(T\)开到\(500000\)也挺稳的呢。据说还可以用\(priority\)_\(queue\)来维护最小集合,优化到\(O(n logk T)\),不过貌似还没必要。
\(Code:\)
#include<bits/stdc++.h>
using namespace std;
const int max_n=20+5,T=500000;
int n,k;
double a[max_n],f[max_n],x,ans=1e18;
void randomShuffle(){//随机打乱
for(int i=1;i<=n;i++)swap(a[i],a[rand()%n+1]);
}
int Findmin(){//找最小集合
int p,tot=1e18;
for(int i=1;i<=k;i++){
if(f[i]<tot)tot=f[i],p=i;
}
return p;
}
void solve(){
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++){
int p=Findmin();f[p]+=a[i];
}
double sum=0;
for(int i=1;i<=k;i++){
sum+=(f[i]-x)*(f[i]-x);
}//计算均方差
sum=sqrt(sum/k);ans=min(ans,sum);
}
int main(){
ios::sync_with_stdio(false);
srand((unsigned)time(NULL));
cin>>n>>k;
for(int i=1;i<=n;i++)cin>>a[i],x+=a[i];
x=x/k;//x即为平均值
for(int i=1;i<=T;i++)randomShuffle(),solve();
printf("%.2lf\n",ans);
return 0;
}
\(\operatorname{Update}\) \(\operatorname{On}\) \(\operatorname{2019.10.02}\)