Deep Learning for NLP学习翻译笔记(2)

Deep Learning for NLP

Deep Learning for NLP

Lecture 2:Introduction to Teano

enter link description here

Neural Networks can be expressed as one long function of vector and matrix operations.

(神经网络可以表示为一个向量和矩阵运算的长函数。)

Deep Learning for NLP学习翻译笔记(2)

Common Frameworks(常用框架)

  • C/C++

    if you need maximum performance,start from scratch(如果你需要最高性能,那么就从头开始编程吧:)
  • Matlab
  • Caffe

    Ported Matlab’s implementation nets to C.(Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口)

    Mainly used for machine-vision(主要用于机器视觉。)
  • Torch:

    Based on Lua,(基于Lua,)

    Used by a lot of companies(Google Deep Mind,Facebook,IBM)(被很多公司所使用,包括google深度大脑,facebook,IBM等等)
  • Theano

    Python based framework(python基本的框架)

    Main framework used in the research community(主要框架被用于研究团队)

    For comparison: http://fastml.com/torch-vs-theano/

Introduction to Theano

Advantage(优点)

  • Python library with tight integration of Numpy(python库Numpy的紧密集成)

    Easy syntax for matrix operations(简单的矩阵运算语法)
  • Transparent use of GPU(speed-up of up to 140x)(透明的GPU使用(加速140x))
  • Efficient symbolic differentiation(Theano computes the gradient)(有效的符号微分(Theano计算梯度))
  • Speed and stability optimizations(速度和稳定性优化)
  • Calculations are dynamically mapped to C code(计算动态映射到C代码)

    We do our computations as fast as we would have written it in C (我们有跟我们用C代码写出来的程序一样快的运算速度)

    Great performance(>10 faster than Java in my experiments)(伟大的性能(比在我的实验中用Java还要快10倍))

Disadvantages(缺点)

  • Debugging is really hard(调试很困难)

Some note on the installation of Theano(Theano安装的一些注意事项)

  • Theano utilizes BLAS (Basic Linear Algebra Subprograms)(Theano利用BLAS(基本线性代数的子程序))

    Building blocks for fast vector and matrix operations(速度向量和矩阵运算的构建块)

    Often written in Fortran, sometimes in Assembler(经常用Fortran编写,但有时候用Assembler)
  • For performance optimization install a BLAS package(为优化性能安装一个BLAS包)
  • Benchmark different BLAS packages(不同BLAS包的基准不同)
  • I use a manually compiled OpenBlas implementation(我使用一个手动编译OpenBlas来实现)

    Installation notes: http://deeplearning.net/software/theano/install_ubuntu.html

Theano – Flow(Theano流程图)

The execution of a Theano script is a bit different(Theano脚本的执行略有不同)

Deep Learning for NLP学习翻译笔记(2)

Theano-Computation Graph(Theano计算图)

Deep Learning for NLP学习翻译笔记(2)

import theano
import theano.tensor as T

a=T.fvector()
b=T.fvector()
c=T.fmatrix()

res1=a+b
res2=T.dot(res1,c)

上一篇:vue使用插件 使用库


下一篇:深入比特币原理(三)——交易的输入(input)与输出(output)