题目链接:http://codeforces.com/contest/1140/problem/E
题目大意:
如果一个数组的存在一个奇数长的回文就不好。
不是不好的数组是好的。
你可以把-1用1到k中一个数替换。问可以有多少种不同的好数组。
开虚拟赛最后一分钟把它A了,很开心,很开心。
思路:
我们翻译一下,如果存在长度为5的回文就必须会出现长度为3的回文。
也就是说不能出现长度为3回文。
也就是说x[i]!=x[i+2],x[i]!=x[i-2];(x[i]为输入数组)
那我们把数组分为两个数组,按奇偶分。(1,3,5,,,)(2,4,6,,,)
这两个数组就都要满足一个条件x[i]!=x[1+i]&&x[i]!=x[i-1];(相邻两个数不能相等)
然后我们就开始DP啦。
对于奇偶两个数组我就分析一个啦,因为都差不多。(相邻两个数不能相等)
首先,当然是n*k的DP。
DP[a][b]表示到a下为b的方案数。
所以DP[a][b]等于所有DP[a-1][i](1<=i<=k,i!=b)的和。
如果x[a]为-1,就算所有的1到k。
如果x[a]>0,就只算DP[a][x[a]];
这个可以理解吗?
可以理解就太好了!!!
然而,你在DP的过程中,发现DP[a][i](1<=i<=k)中只可能有两个不同的值(不会超过3个),而且产生不同的值是一个特殊的位置。
你可以先拿小一点的数据打表看看。
也就是说,对于每一个状态。只有两种可能,而不是k种可能。
所以,我们就可以写O(n)的DP了。
我画了两张图给你们看看。
然后到了愉快的贴代码时间了。不是很懂可以私聊QQ:1328247116,也可以下面留言。~~
#include <bits/stdc++.h>
using namespace std; #define int long long
#define IOS ios::sync_with_stdio(false);
#define endl "\n"
#define MAX 200050
#define mod 998244353 ///
int x[MAX];
int dp[MAX];
int dp_1=,dp_1_sum=;
int dp_2=,dp_2_sum=;
int ans[MAX];
///
signed main()
{
IOS; int n,m;
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>x[i];
} if(x[]>){
dp[]=;
dp_1=x[],dp_1_sum=;
}
else{
dp[]=;
dp_1=,dp_1_sum=;
} for(int i=;i<=n;i+=){
if(x[i]>){
if(x[i]==dp_1){
dp_1_sum=(m-)*dp[i-]%mod;
}
else{
dp_1_sum=((m-)*dp[i-]%mod+dp_1_sum)%mod;
}
dp_1=x[i];
}
else{
dp[i]=((m-)*dp[i-]%mod+dp_1_sum)%mod;
dp_1_sum=(m-)*dp[i-]%mod;
}
} ///
if(x[]>){
dp[]=;
dp_2=x[],dp_2_sum=;
}
else{
dp[]=;
dp_2=,dp_2_sum=;
} for(int i=;i<=n;i+=){
if(x[i]>){
if(x[i]==dp_2){
dp_2_sum=(m-)*dp[i-]%mod;
}
else{
dp_2_sum=((m-)*dp[i-]%mod+dp_2_sum)%mod;
}
dp_2=x[i];
}
else{
dp[i]=((m-)*dp[i-]%mod+dp_2_sum)%mod;
dp_2_sum=(m-)*dp[i-]%mod;
}
}
int ans;
if(n%==){
ans=(dp_1_sum+(m-)*dp[n-]%mod)*(dp_2_sum+(m-)*dp[n]%mod)%mod;
}
else{
ans=(dp_1_sum+(m-)*dp[n]%mod)*(dp_2_sum+(m-)*dp[n-]%mod)%mod;
}
cout<<ans;
return ;
} /* */