题意:
秦始皇要修路使得所有的城市连起来,并且花费最少;有一个人,叫徐福,他可以修一条魔法路,不花费任何的钱与劳动力。
秦始皇想让修路的费用最少,但是徐福想要受益的人最多,所以他们经过协商,决定让 A / B 最大,A代表被魔法路连接的两个城市的人口总数,B代表修的路中非魔法路的总长度。
输出 A / B 的最大值。
思路:
A / B 最大,则A尽可能大,B尽可能小,所以首先把MST求出来。由于每个城市的人口有很大的偏差,所以必须枚举每一条边,计算连接的两个城市的人口,复杂度为O(n^2),所以每次替换边的复杂度必须是O(1)。
由于是稠密图,所以用prim算法,prim算法在O(n^2)的复杂度的时候,可以维护最小生成树上两点之间的最长边,这样就可以在过程中把两点间的最长边保存下来。这个是依靠已知的前驱节点实现的。复杂度为O(n^2)。
枚举每一条边时,如果这条边是MST中的边,那么就直接计算 A / B;如果这条边不在MST中,加入这条边就会成环,这时我们保存的信息就起作用了,成环之后把在MST中的连接这两点的最长边去掉,就是新的生成树的权值,且保证了B尽可能小。替换的时间复杂度为O(1)。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <math.h>
using namespace std;
const int maxn = ;
double path[maxn][maxn];
double g[maxn][maxn];
double dis[maxn];
bool vis[maxn];
bool used[maxn][maxn];
int peo[maxn];
int pre[maxn];
double ans;
struct point
{
int x,y;
}p[maxn]; double cal(int i,int j)
{
double x2 = (p[i].x - p[j].x) * (p[i].x - p[j].x);
double y2 = (p[i].y - p[j].y) * (p[i].y - p[j].y); return sqrt(x2 + y2);
} int prim(int n)
{
memset(vis,,sizeof(vis));
memset(path,,sizeof(path));
memset(used,,sizeof(used));
for (int i = ;i <= n;i++) dis[i] = 1e15; vis[] = ;
dis[] = ; int tot = ;
ans = ;
//double len = 0; for (int i = ;i <= n;i++)
{
pre[i] = ;
dis[i] = g[][i];
} for (int i = ;i < n;i++)
{
int u;
double d = 1e15; for (int j = ;j <= n;j++)
{
if (!vis[j] && dis[j] < d)
{
d = dis[j];
u = j;
}
} vis[u] = ; ans += d; //tot = max(peo[u] + peo[pre[u]],tot); used[u][pre[u]] = used[pre[u]][u] = ; for (int j = ;j <= n;j++)
{
if (vis[j] && j != u)
path[u][j] = path[j][u] = max(d,path[j][pre[u]]);
} for (int j = ;j <= n;j++)
{
if (!vis[j])
{
if (g[u][j] < dis[j])
{
dis[j] = g[u][j];
pre[j] = u;
}
}
}
} //printf("%.2f **\n",ans); return tot;
} int main()
{
int t; scanf("%d",&t); while (t--)
{
int n; scanf("%d",&n); for (int i = ;i <= n;i++)
{
scanf("%d%d%d",&p[i].x,&p[i].y,&peo[i]);
} for (int i = ;i <= n;i++)
{
for (int j = ;j <= n;j++)
{
g[i][j] = 1e15;
}
} for (int i = ;i <= n;i++)
{
for (int j = i+;j <= n;j++)
{
g[i][j] = g[j][i] = cal(i,j);
}
} prim(n); double ans1 = ; for (int i = ;i <= n;i++)
{
for (int j = i + ;j <= n;j++)
{
if (used[i][j])
{
int peop = peo[i] + peo[j];
ans1 = max(peop / (ans - g[i][j]),ans1); //printf("%d %d %d %.2f **\n",i,j,peop,ans - g[i][j]);
}
else
{
int peop = peo[i] + peo[j];
ans1 = max(peop / (ans - path[i][j]),ans1);
//printf("%d %d %d %.2f **\n",i,j,peop,ans - path[i][j]);
}
}
} printf("%.2f\n",ans1); //printf("%.2f",path[1][4]);
} return ;
}