HashMap实现详解 基于JDK1.8

HashMap实现详解 基于JDK1.8

1.数据结构

散列表:是一种根据关键码值(Key value)而直接进行访问的数据结构。采用链地址法处理冲突。

HashMap采用Node<K,V>数组作为散列表来存储数据。源码声明如下:

/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;

Node<K,V>节点的源码如下,可见Node<K,V>有四个成员。

static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} // 其余方法省略
}

散列函数:HashMap的散列函数很简单,i = (n - 1) & hash,将hash值与Node<K,V>数组的大小n通过&运算即得到在Node<K,V>数组中的位置i。

2.关键变量

有几个关键的变量需要事先理解,源码定义如下:

/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// 这一步位移运算,得到结果16,作为Node<K,V>数组的初始大小,每次扩容都为原先的2倍。 /**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 又称负载因子,定义了扩容的时机,默认为存储元素达到了16*75%时就要进行扩容。 static final int TREEIFY_THRESHOLD = 8;
// 因为采用链地址法处理冲突,当链表过长时,HashMap性能会下降,因此当链表的长度超过8时,会将链表转换为红黑树进行优化。 static final int UNTREEIFY_THRESHOLD = 6;
// 在哈希表扩容时,如果发现链表长度小于 6,则会由树重新退化为链表。 static final int MIN_TREEIFY_CAPACITY = 64;
// 只有存储数量大于 64 才会发生转换。这是为了避免在哈希表建立初期,多个键值对恰好被放入了同一个链表中而导致不必要的转化。

3.put方法

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 判断散列表是否为空,若是,则进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 判断散列表位置是否冲突,若否,直接存储
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 处理冲突
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

put流程图

HashMap实现详解  基于JDK1.8

put流程总结:

1.根据Key计算hash,得到散列地址

2.若散列表大小为0,则初始化大小为16

3.若散列地址无冲突,则直接存储。若有冲突,则将元素存入链表或红黑树

4.当链表长度大于8,且总元素个数大于64时,将链表转换为红黑树

5.当总元素个数达到Capacity的75%时,将散列表扩容为2倍

4.get方法

final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

get流程比较简单,直接总结一下:

1.根据Key计算hash,然后根据hash计算散列地址

2.判断元素hash与Key是否同时相等,相等则返回

3.若不相等,节点属于红黑树节点则在红黑树中查找,不属于则遍历链表查找

4.没有此节点则返回null

5.hash方法

/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

这是HashMap中计算hash值的方法,可以看出,这里首先调用key.hashCode()得到key的hash,然后将hash右移16位(最高为补0),与自身进行^(异或)运算,得到最终hash。这里有一个疑问,为什么要将hash值右移16位再来一个异或呢,直接用初始值不行吗?下面来看解释:

我们知道,HashMap中的散列地址是根据hash值得到的,方法是 (capacity-1)&hash,这个方法虽然很快,但是也带来一些副作用,这里也解释了为什么HashMap每次扩容都为2倍,因为这样 (capacity-1)恰好是一个掩码


10110001 10100101 | 11000100 00100101 // hash值
& 00000000 00000000 | 00000000 00001111 // 16-1, 假设capacity为初始值16
-----------------------------------------
00000000 00000000 | 00000000 00000101 // 最终值5

当计算散列地址时,直接舍弃了高位的信息,只使用了capacity大小的容量,因此很有可能造成大量的地址冲突,效率降低。因此要利用被舍弃的高位信息,一个办法就是将高位与地位做^(异或)运算,使低位参杂高位信息。


10110001 10101001 | 11000100 00100101 // h=key.hashCode()
^ 00000000 00000000 | 10110001 10101001 // h >>> 16
-----------------------------------------
10110001 10101001 | 01110101 10001100 // hash

右位移16位,正好是32bit的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。

总结:hash()函数的作用是为了减少散列函数的副作用。

上一篇:redis哈希的内部编码


下一篇:Redis底层数据结构的映射关系