【算法】博弈论+二分图匹配(最大流)
【题解】方格图黑白染色得到二分图,
二分图博弈:当起点不属于某个最大匹配时,后手必胜。
问题转化为那些点不属于某个最大匹配。
先找到一个最大匹配,非匹配点加入答案。
假设一个匹配点要解放成为非匹配点,则与其匹配的点必须去匹配另一个点。如果另一个点也是匹配点,则其对面又要去找另一个点。
最终得到结论,一个匹配点的解放,必须有一个非匹配点进入最大匹配。
那么从S一侧的非匹配点出发,沿着“非匹配边-匹配边”的路径走,途中经过的S一侧的匹配点都可以被解放出来。
从T一侧的非匹配点出发也做一次,得到答案。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=,inf=0x3f3f3f3f;
const int dx[]={,-,,,};
const int dy[]={,,,,-};
struct edge{int v,from,flow;}e[maxn*];
int first[maxn],id[][],idx[maxn],idy[maxn],S,T,cnt,tot=,d[maxn],ans[maxn],ansnum,cur[maxn],col[maxn],n,m;
char s[];
bool map[][],vis[maxn];
void insert(int u,int v,int w)
{tot++;e[tot].v=v;e[tot].flow=w;e[tot].from=first[u];first[u]=tot;
tot++;e[tot].v=u;e[tot].flow=;e[tot].from=first[v];first[v]=tot;}
queue<int>q;
bool bfs()
{
memset(d,-,sizeof(d));
q.push(S);d[S]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=first[x];i;i=e[i].from)
if(d[e[i].v]==-&&e[i].flow)
{
d[e[i].v]=d[x]+;
q.push(e[i].v);
}
}
return d[T]!=-;
}
int dinic(int x,int a)
{
if(x==T||a==)return a;
int flow=,f;
for(int& i=cur[x];i;i=e[i].from)
if(d[e[i].v]==d[x]+&&(f=dinic(e[i].v,min(a,e[i].flow))))
{
e[i].flow-=f;
e[i^].flow+=f;
a-=f;
flow+=f;
if(a==)break;
}
return flow;
}
void dfs(int x,int f)
{
vis[x]=;
if(col[x]==f&&x!=S&&x!=T)ans[++ansnum]=x;
for(int i=first[x];i;i=e[i].from)
if(e[i].flow==f&&!vis[e[i].v])dfs(e[i].v,f);
}
int main()
{
scanf("%d%d",&n,&m);
cnt=;
for(int i=;i<=n;i++)
{
scanf("%s",s+);
for(int j=;j<=m;j++)if(s[j]=='.')
{
id[i][j]=++cnt;
idx[cnt]=i;idy[cnt]=j;
map[i][j]=;
}
}
S=;T=++cnt;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)if(map[i][j])
{
if((i+j)&)
{
insert(S,id[i][j],);
for(int k=;k<=;k++)if(map[i+dx[k]][j+dy[k]])
{
insert(id[i][j],id[i+dx[k]][j+dy[k]],);
}
col[id[i][j]]=;
}
else{insert(id[i][j],T,);col[id[i][j]]=;}
}
}
while(bfs())
{
for(int i=;i<=cnt;i++)cur[i]=first[i];
dinic(S,inf);
}
ansnum=;
memset(vis,,sizeof(vis));
dfs(S,);
memset(vis,,sizeof(vis));
dfs(T,);
if(ansnum)
{
printf("WIN\n");
sort(ans+,ans+ansnum+);
for(int i=;i<=ansnum;i++)printf("%d %d\n",idx[ans[i]],idy[ans[i]]);
}
else printf("LOSE\n");
return ;
}