Problem Description
There is a number sequence A1,A2....An,you can select a interval [l,r] or not,all the numbers Ai(l≤i≤r) will become f(Ai).f(x)=(1890x+)mod10007.After that,the sum of n numbers should be as much as possible.What is the maximum sum?
Input
There are multiple test cases.
First line of each case contains a single integer n.(≤n≤)
Next line contains n integers A1,A2....An.(≤Ai≤)
It's guaranteed that ∑n≤106.
Output
For each test case,output the answer in a line.
Sample Input
Sample Output
Source
思路:令Ai=f(Ai)-Ai,然后求一遍最大连续子序列和就能知道最多能增加的值。
一开始统计所有数的和ans,再加上最多增加的值就是答案了。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 100006
#define inf 1e12
int n;
int a[N];
int A[N];
int main()
{
while(scanf("%d",&n)==){
int ans=;
for(int i=;i<n;i++){
scanf("%d",&a[i]);
ans+=a[i];
}
for(int i=;i<n;i++){
A[i]=(a[i]*+)%-a[i];
//printf("===%d\n",A[i]);
}
int ThisSum=,MaxSum=;
for(int i=;i<n;i++){
ThisSum+=A[i];
if(ThisSum>MaxSum){
MaxSum=ThisSum;
}else if(ThisSum<){
ThisSum=;
}
}
ans+=MaxSum;
printf("%d\n",ans); }
return ;
}