棋盘问题
题目链接http://poj.org/problem?id=1321
Time Limit: 1000MS Memory Limit: 10000K
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
Sample Output
2
1
这道题比较简单,没有什么坑,类似于八皇后问题,对于新手来说比较容易上手,唯一需要考虑的是,k的值小于n时有某些行没有放棋子。具体代码如下
#include <cstdio>
#include <cstring>
int map[11][11]= {0};
int v[10]= {0};
void dfs(int t);
int n,k,sum=0,num=0,s=1;
int main() {
while (scanf ("%d%d",&n,&k)) {
if (n==-1) break;
char ch;
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++) {
ch=getchar();
if (ch=='\n') ch=getchar();
if (ch=='#') {
map[i][j]=1;
}
}
dfs(0);
printf ("%d\n",sum);
sum=0;
num=0;
memset(v,0,sizeof(v));
memset(map,0,sizeof(map));
}
return 0;
}
void dfs(int t) {
if (num==k) {
sum++;
return;
}
if (t>n) return;
for (int i=1; i<=n; i++) {
if (map[t][i] && !v[i]) { //此行有棋盘可放
num++;
v[i]=1;
dfs(t+1);
v[i]=0;
num--;
}
}
dfs(t+1);//此行不放
}