https://blog.csdn.net/shenxiaolu1984/article/details/51152614
从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内。所有计算没有重复,完全在GPU中完成,大大提高了运行速度。
faster RCNN可以简单地看做“区域生成网络+fast RCNN“的系统,用区域生成网络代替fast RCNN中的Selective Search方法。本篇论文着重解决了这个系统中的三个问题:
- 如何设计区域生成网络
- 如何训练区域生成网络
- 如何让区域生成网络和fast RCNN网络共享特征提取网络
区域生成网络:结构
基本设想是:在提取好的特征图上,对所有可能的候选框进行判别。由于后续还有位置精修步骤,所以候选框实际比较稀疏。
特征提取
原始特征提取(上图灰色方框)包含若干层conv+relu,直接套用ImageNet上常见的分类网络即可。本文试验了两种网络:5层的ZF[3],16层的VGG-16[4],具体结构不再赘述。
额外添加一个conv+relu层,输出5139256维特征(feature)。
候选区域(anchor)
特征可以看做一个尺度5139的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积128,256,512,三种比例1:1,1:2,2:1。这些候选窗口称为anchors。下图示出5139个anchor中心,以及9种anchor示例。
在整个faster RCNN算法中,有三种尺度。
原图尺度:原始输入的大小。不受任何限制,不影响性能。
归一化尺度:输入特征提取网络的大小,在测试时设置,源码中opts.test_scale=600。anchor在这个尺度上设定。这个参数和anchor的相对大小决定了想要检测的目标范围。
网络输入尺度:输入特征检测网络的大小,在训练时设置,源码中为224*224。
窗口分类和位置精修
分类层(cls_score)输出每一个位置上,9个anchor属于前景和背景的概率;窗口回归层(bbox_pred)输出每一个位置上,9个anchor对应窗口应该平移缩放的参数。
对于每一个位置来说,分类层从256维特征中输出属于前景和背景的概率;窗口回归层从256维特征中输出4个平移缩放参数。
实际代码中,将51399个候选位置根据得分排序,选择最高的一部分,再经过Non-Maximum Suppression获得2000个候选结果。之后才送入分类器和回归器。
区域生成网络:训练
样本
考察训练集中的每张图像:
a. 对每个标定的真值候选区域,与其重叠比例最大的anchor记为前景样本
b. 对a)剩余的anchor,如果其与某个标定重叠比例大于0.7,记为前景样本;如果其与任意一个标定的重叠比例都小于0.3,记为背景样本
c. 对a),b)剩余的anchor,弃去不用。
d. 跨越图像边界的anchor弃去不用
代价函数
同时最小化两种代价:
a. 分类误差
b. 前景样本的窗口位置偏差
与Fast RCNN类似。
超参数
原始特征提取网络使用ImageNet的分类样本初始化,其余新增层随机初始化。
每个mini-batch包含从一张图像中提取的256个anchor,前景背景样本1:1.
前60K迭代,学习率0.001,后20K迭代,学习率0.0001。
共享特征
区域生成网络(RPN)和fast RCNN都需要一个原始特征提取网络(下图灰色方框)。这个网络使用ImageNet的分类库得到初始参数W0,但要如何精调参数,使其同时满足两方的需求呢?本文讲解了三种方法。
- 轮流训练
a. 从W0W0开始,训练RPN。用RPN提取训练集上的候选区域
b. 从W0W0开始,用候选区域训练Fast RCNN,参数记为W1W1
c. 从W1W1开始,训练RPN…
具体操作时,仅执行两次迭代,并在训练时冻结了部分层。论文中的实验使用此方法。
与Selective Search方法(黑)相比,当每张图生成的候选区域从2000减少到300时,本文RPN方法(红蓝)的召回率下降不大。说明RPN方法的目的性更明确。
使用更大的Microsoft COCO库训练,直接在PASCAL VOC上测试,准确率提升6%。说明faster RCNN迁移性良好,没有over fitting。