hdu 2243 考研路茫茫——单词情结(AC自动+矩阵)

考研路茫茫——单词情结

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4843    Accepted Submission(s): 1527

Problem Description
背单词,始终是复习英语的重要环节。在荒废了3年大学生涯后,Lele也终于要开始背单词了。
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。

于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。

比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。

这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。

 
Input
本题目包含多组数据,请处理到文件结束。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
 
Output
对于每组数据,请在一行里输出一共可能的单词数目。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
 
Sample Input
2 3
aa ab
1 2
a
 
Sample Output
104
52
/*
hdu 2243 考研路茫茫——单词情结(AC自动+矩阵) 给你m个子串,求包含至少一个子串的长度不大于n的字符串的种类数
所有可能: 26+26^2 + .... + 26^n
而且前面也求过一个子串都不包含的情况。即把他们的关系转换成矩阵mat
一个都不包含的情况: mat + mat^2 +..... + mat^n
对于求 次方和. mat+... mat^6 = mat+mat^2+mat^3 + mat^3*(mat+mat^2+mat^3)
于是求出两个的值然后减去即可 // 矩阵求a走m步到b的方案数 + A + A^2 + A^3 + ... + A^k的结果(两个矩阵的经典应用)
hhh-2016-04-23 22:33:39
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef unsigned long long ll;
typedef unsigned int ul;
const int maxn = 40010;
int tot; struct Matrix
{
int len;
ll ma[50][50];
Matrix() {}
Matrix(int L)
{
len = L;
}
}; Matrix mult(Matrix ta,Matrix tb)
{
Matrix tc;
tc.len = ta.len;
for(int i = 0; i < ta.len; i++)
{
for(int j = 0; j < ta.len; j++)
{
tc.ma[i][j] = 0;
for(int k = 0; k < ta.len; k++){
tc.ma[i][j] = tc.ma[i][j]+(ll)ta.ma[i][k]*tb.ma[k][j];
}
}
}
return tc;
} Matrix pow_mat(Matrix a,ll n)
{
Matrix cnt;
cnt.len = a.len;
memset(cnt.ma,0,sizeof(cnt.ma));
for(int i = 0 ; i < cnt.len; i++)
cnt.ma[i][i] = 1; while(n)
{
if(n&1) cnt = mult(cnt,a);
a = mult(a,a);
n >>= 1;
}
return cnt;
} Matrix Add(Matrix ta,Matrix tb)
{
Matrix tc;
tc.len = ta.len;
for(int i = 0;i < tc.len;i++)
{
for(int j = 0;j < tc.len;j++)
{
tc.ma[i][j] = (ta.ma[i][j]+tb.ma[i][j]);
}
}
return tc;
} struct Tire
{
int nex[50][26],fail[50],ed[50];
int root,L;
int newnode()
{
for(int i = 0; i < 26; i++)
nex[L][i] = -1;
ed[L++] = 0;
return L-1;
} void ini()
{
L = 0,root = newnode();
} void inser(char buf[])
{
int len = strlen(buf);
int now = root;
for(int i = 0; i < len; i++)
{
int ta = buf[i]-'a';
if(nex[now][ta] == -1)
nex[now][ta] = newnode();
now = nex[now][ta];
}
ed[now] ++;
} void build()
{
queue<int >q;
fail[root] = root;
for(int i = 0; i < 26; i++)
if(nex[root][i] == -1)
nex[root][i] = root;
else
{
fail[nex[root][i]] = root;
q.push(nex[root][i]);
}
while(!q.empty())
{
int now = q.front();
q.pop();
if(ed[fail[now]])
ed[now] = 1;
for(int i = 0; i < 26; i++)
{
if(nex[now][i] == -1)
nex[now][i] = nex[fail[now]][i];
else
{
fail[nex[now][i]] = nex[fail[now]][i];
q.push(nex[now][i]);
}
}
}
} Matrix to_mat()
{
Matrix mat(L);
memset(mat.ma,0,sizeof(mat.ma));
for(int i = 0;i < L;i++)
{
for(int j = 0;j < 26;j++)
{
if(!ed[nex[i][j]])
mat.ma[i][nex[i][j]] ++;
}
}
return mat;
}
}; Matrix mat; Matrix cal(int n)
{
if(n == 1)
return mat;
Matrix tp = cal(n/2);
if(n & 1)
{
Matrix t = pow_mat(mat,n/2+1);
tp = Add(tp,mult(t,tp));
tp = Add(tp,t);
}
else
{
Matrix t = pow_mat(mat,n/2);
tp = Add(tp,mult(t,tp));
}
return tp;
} ll pow_mod(ll a,int n)
{
ll cnt = 1;
while(n)
{
if(n&1) cnt = cnt*a;
a = a*a;
n >>= 1;
}
return cnt;
} ll ca(int n)
{
if(n == 1)
return 26;
ll tp = ca(n/2);
if(n & 1)
{
ll t = pow_mod(26,n/2+1);
tp = tp+t+tp*t;
}
else
{
ll t = pow_mod(26,n/2);
tp = tp+t*tp;
}
return tp;
} Tire ac;
char buf[20];
int main()
{
int n,m;
while(scanf("%d%d",&m,&n) != EOF)
{
ac.ini();
for(int i = 1; i <= m; i++)
{
scanf("%s",buf);
ac.inser(buf);
}
ac.build();
mat = ac.to_mat();
Matrix ans = cal(n);
ll tans = ca(n);
ll t = 0;
for(int i = 0;i < ans.len;i++)
{
t += ans.ma[0][i];
}
printf("%I64u\n",tans-t);
}
return 0;
}

  

上一篇:HDU 2243 考研路茫茫——单词情结(AC自动机+矩阵)


下一篇:KMP + 求最小循环节 --- HDU 1358 Period