格式八为格式五的变形泰勒展开
非对称但是相对前者更精准
代码解决:
function [result] = duijiao(x0,x1,h,q1,q2,f,u0,un)
xx = x0:h:x1;
len=(x1-x0)/h+1;
Q1 = matlabFunction(q1);
Q2 = matlabFunction(q2);
F = matlabFunction(f);
A=diag(Q1(xx(2:len-1)))+diag(Q2(xx(3:len-1)),1)+diag(Q2(xx(2:len-2)),-1);
b = F(xx(2:len-1));
b(1)=b(1)+u0;
b(len-2)=b(len-2)+un;
result = inv(A)*(b');
end
题目:(第二问)
标准答案
ff =
exp(x^2)
>> FF=matlabFunction(ff)
FF =
包含以下值的 function_handle:
@(x)exp(x.^2)
>> FF(1.05:0.05:1.95)
ans =
1 至 8 列
3.0117 3.3535 3.7528 4.2207 4.7707 5.4195 6.1873 7.0993
9 至 16 列
8.1866 9.4877 11.0508 12.9358 15.2183 17.9933 21.3809 25.5337
17 至 19 列
30.6459 36.9661 44.8131
数值解答案:
syms x
>> h=0.05
h =
0.0500
>> q1 = (2+5/6*h*h*4*x^2)
q1 =
x^2/120 + 2
>> q2 = h*h/12*4*x*x-1
q2 =
x^2/1200 - 1
>> f=h*h/12*((-2*exp((x+h)^2))+10*(-2*exp(x*x))+(-2*exp((x-h)^2)))
f =
- exp(x^2)/240 - exp((x - 1/20)^2)/2400 - exp((x + 1/20)^2)/2400
duijiao(1,2,h,q1,q2,f,exp(1),(1-h*h/12*4*exp(2))*exp(4))
ans =
3.0114
3.3506
3.7474
4.2126
4.7599
5.4057
6.1703
7.0788
8.1622
9.4589
11.0169
12.8961
15.1717
17.9386
21.3165
25.4575
30.5556
36.8585
44.6844
对比::