[LeetCode] 1457. Pseudo-Palindromic Paths in a Binary Tree

Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome.

Return the number of pseudo-palindromic paths going from the root node to leaf nodes.

Example 1:

[LeetCode] 1457. Pseudo-Palindromic Paths in a Binary Tree

Input: root = [2,3,1,3,1,null,1]
Output: 2 
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1]. Among these paths only red path and green path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 2:

[LeetCode] 1457. Pseudo-Palindromic Paths in a Binary Tree

Input: root = [2,1,1,1,3,null,null,null,null,null,1]
Output: 1 
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 3:

Input: root = [9]
Output: 1

Constraints:

  • The given binary tree will have between 1 and 10^5 nodes.
  • Node values are digits from 1 to 9.

二叉树中的伪回文路径。

给你一棵二叉树,每个节点的值为 1 到 9 。我们称二叉树中的一条路径是 「伪回文」的,当它满足:路径经过的所有节点值的排列中,存在一个回文序列。

请你返回从根到叶子节点的所有路径中 伪回文 路径的数目。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/pseudo-palindromic-paths-in-a-binary-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路是DFS + 回溯。这道题跟113题很像,你需要去找到树中每一条从根节点到叶子节点的路径,然后再多一步判断,判断每一条路径是不是满足题目定义的伪回文。判断伪回文额外写一个函数判断即可。这里我提供两种做法,思路差不多,第一种方法速度快一些,第二种方法不使用全局变量。两种做法的时间空间复杂度均为O(n)。

DFS + 回溯

count是全局变量而且hashmap是被带入helper函数往下一层去递归的,所以需要回溯

Java实现

 1 /**
 2  * Definition for a binary tree node.
 3  * public class TreeNode {
 4  *     int val;
 5  *     TreeNode left;
 6  *     TreeNode right;
 7  *     TreeNode() {}
 8  *     TreeNode(int val) { this.val = val; }
 9  *     TreeNode(int val, TreeNode left, TreeNode right) {
10  *         this.val = val;
11  *         this.left = left;
12  *         this.right = right;
13  *     }
14  * }
15  */
16 class Solution {
17     int count = 0;
18 
19     public int pseudoPalindromicPaths(TreeNode root) {
20         int[] map = new int[10];
21         helper(root, map);
22         return count;
23     }
24 
25     private void helper(TreeNode root, int[] map) {
26         // base case
27         if (root == null) {
28             return;
29         }
30         map[root.val]++;
31         if (root.left == null && root.right == null) {
32             if (isPalindrome(map)) {
33                 count++;
34             }
35         }
36 
37         helper(root.left, map);
38         helper(root.right, map);
39         map[root.val]--;
40     }
41 
42     private boolean isPalindrome(int[] map) {
43         int single = 0;
44         for (int i = 0; i < map.length; i++) {
45             if (map[i] % 2 == 1) {
46                 single++;
47             }
48         }
49         return single > 1 ? false : true;
50     }
51 }

 

更像前序遍历的一种做法,没有回溯

Java实现

 1 /**
 2  * Definition for a binary tree node.
 3  * public class TreeNode {
 4  *     int val;
 5  *     TreeNode left;
 6  *     TreeNode right;
 7  *     TreeNode() {}
 8  *     TreeNode(int val) { this.val = val; }
 9  *     TreeNode(int val, TreeNode left, TreeNode right) {
10  *         this.val = val;
11  *         this.left = left;
12  *         this.right = right;
13  *     }
14  * }
15  */
16 class Solution {
17     public int pseudoPalindromicPaths(TreeNode root) {
18         return helper(root, new HashSet<>());
19     }
20 
21     private int helper(TreeNode root, HashSet<Integer> set) {
22         if (root == null) {
23             return 0;
24         }
25         if (set.contains(root.val)) {
26             set.remove(root.val);
27         } else {
28             set.add(root.val);
29         }
30         if (root.left == null && root.right == null) {
31             return set.size() <= 1 ? 1 : 0;
32         }
33         // 注意这里hashset的细节
34         int left = helper(root.left, new HashSet<>(set));
35         int right = helper(root.right, new HashSet<>(set));
36         return left + right;
37     }
38 }

 

相关题目

113. Path Sum II

1457. Pseudo-Palindromic Paths in a Binary Tree

LeetCode 题目总结

上一篇:运用Filebeat module分析nginx日志


下一篇:CF695 D. Sum of Paths(DP)