Python logger模块
1 logging模块简介
logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等;相比print,具备如下优点:
可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息;
print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据;logging则可以由开发者决定将信息输出到什么地方,以及怎么输出;
Logger从来不直接实例化,经常通过logging模块级方法(Module-Level Function)logging.getLogger(name)来获得,其中如果name不给定就用root。名字是以点号分割的命名方式命名的(a.b.c)。对同一个名字的多个调用logging.getLogger()方法会返回同一个logger对象。这种命名方式里面,后面的loggers是前面logger的子logger,自动继承父loggers的log信息,正因为此,没有必要把一个应用的所有logger都配置一遍,只要把顶层的logger配置好了,然后子logger根据需要继承就行了。
logging.Logger对象扮演了三重角色:
首先,它暴露给应用几个方法以便应用可以在运行时写log.
其次,Logger对象按照log信息的严重程度或者根据filter对象来决定如何处理log信息(默认的过滤功能).
最后,logger还负责把log信息传送给相关的handlers.
2 logging模块使用
2.1 基本使用
配置logging基本的设置,然后在控制台输出日志,
import logging
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(name)
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")
运行时,控制台输出,
1 2016-10-09 19:11:19,434 - main - INFO - Start print log
2 2016-10-09 19:11:19,434 - main - WARNING - Something maybe fail.
3 2016-10-09 19:11:19,434 - main - INFO - Finish
logging中可以选择很多消息级别,如:DEBUG,INFO,WARNING,ERROR,CRITICAL,通过赋予logger或者handler不同的级别,开发者就可以只输出错误信息到特定的记录文件,或者在调试时只记录调试信息。
将logger的级别改为DEBUG,再观察一下输出结果
1
logging.basicConfig(level = logging.DEBUG,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
从输出结果可以看到,输出了debug的日志记录
1
2
3
4
2016-10-09 19:12:08,289 - main - INFO - Start print log
2016-10-09 19:12:08,289 - main - DEBUG - Do something
2016-10-09 19:12:08,289 - main - WARNING - Something maybe fail.
2016-10-09 19:12:08,289 - main - INFO - Finish
1
logging.basicConfig函数各参数:
1
2
3
4
5
6
7
8
9
10
11
filename:指定日志文件名;
filemode:和file函数意义相同,指定日志文件的打开模式,'w'或者'a';
format:指定输出的格式和内容,format可以输出很多有用的信息,
datefmt:指定时间格式,同time.strftime();
level:设置日志级别,默认为logging.WARNNING;
stream:指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,当stream和filename同时指定时,stream被忽略;
Formatters定义了Logger记录的输出格式。
定义了最终log信息的内容格式,应用可以直接实例化Foamatter类。信息格式字符串用%(
属性名称
格式
说明
name
%(name)s
日志的名称
asctime
%(asctime)s
可读时间,默认格式‘2003-07-08 16:49:45,896’,逗号之后是毫秒
filename
%(filename)s
文件名,pathname的一部分
pathname
%(pathname)s
文件的全路径名称
funcName
%(funcName)s
调用日志多对应的方法名
levelname
%(levelname)s
日志的等级
levelno
%(levelno)s
数字化的日志等级
lineno
%(lineno)d
被记录日志在源码中的行数
module
%(module)s
模块名
msecs %(msecs)d 时间中的毫秒部分
process
%(process)d
进程的ID
processName
%(processName)s
进程的名称
thread
%(thread)d
线程的ID
threadName
%(threadName)s
线程的名称
relativeCreated
%(relativeCreated)d
日志被创建的相对时间,以毫秒为单位
2.2 将日志写入到文件
2.2.1 将日志写入到文件
设置logging,创建一个FileHandler,并对输出消息的格式进行设置,将其添加到logger,然后将日志写入到指定的文件中,
1
2
3
4
5
6
7
8
9
10
11
12
13
import logging
logger = logging.getLogger(name)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")
log.txt中日志数据为:
2017-07-25 15:02:09,905 - main - INFO - Start print log
2017-07-25 15:02:09,905 - main - WARNING - Something maybe fail.
2017-07-25 15:02:09,905 - main - INFO - Finish
2.2.2 将日志同时输出到屏幕和日志文件
logger中添加StreamHandler,可以将日志输出到屏幕上,
- View Code
可以在log.txt文件和控制台中看到
2017-07-25 15:03:05,075 - main - INFO - Start print log
2017-07-25 15:03:05,075 - main - WARNING - Something maybe fail.
2017-07-25 15:03:05,075 - main - INFO - Finish
可以发现,logging有一个日志处理的主对象,其他处理方式都是通过addHandler添加进去,logging中包含的handler主要有如下几种,
- View Code
2.2.3 日志回滚
使用RotatingFileHandler,可以实现日志回滚,
- View Code
可以在工程目录中看到,备份的日志文件,
.3 设置消息的等级
可以设置不同的日志等级,用于控制日志的输出
1
2
3
4
5
6
7
8
日志等级:使用范围
FATAL:致命错误
CRITICAL:特别糟糕的事情,如内存耗尽、磁盘空间为空,一般很少使用
ERROR:发生错误时,如IO操作失败或者连接问题
WARNING:发生很重要的事件,但是并不是错误时,如用户登录密码错误
INFO:处理请求或者状态变化等日常事务
DEBUG:调试过程中使用DEBUG等级,如算法中每个循环的中间状态
setLevel(lvl) 定义处理log的最低等级,内建的级别为:DEBUG,INFO,WARNING,ERROR,CRITICAL;下图是级别对应数值
2.4 捕获traceback
Python中的traceback模块被用于跟踪异常返回信息,可以在logging中记录下traceback
- View Code
控制台和日志文件log.txt中输出
View Code
也可以使用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),
1
2
3
4
将
logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
替换为,
logger.exception("Failed to open sklearn.txt from logger.exception")
2.5 多模块使用logging
主模块mainModule.py
-
View Code
子模块subModule.py -
View Code
执行之后,在控制和日志文件log.txt中输出
View Code
说明:
首先在主模块定义了logger'mainModule',并对它进行了配置,就可以在解释器进程里面的其他地方通过getLogger('mainModule')得到的对象都是一样的,不需要重新配置,可以直接使用。定义的该logger的子logger,都可以共享父logger的定义和配置,所谓的父子logger是通过命名来识别,任意以'mainModule'开头的logger都是它的子logger,例如'mainModule.sub'。
实际开发一个application,首先可以通过logging配置文件编写好这个application所对应的配置,可以生成一个根logger,如'PythonAPP',然后在主函数中通过fileConfig加载logging配置,接着在application的其他地方、不同的模块中,可以使用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'来进行log,而不需要反复的定义和配置各个模块的logger。
3 通过JSON或者YAML文件配置logging模块
尽管可以在Python代码中配置logging,但是这样并不够灵活,最好的方法是使用一个配置文件来配置。在Python 2.7及以后的版本中,可以从字典中加载logging配置,也就意味着可以通过JSON或者YAML文件加载日志的配置。
3.1 通过JSON文件配置
JSON配置文件
-
View Code
通过JSON加载配置文件,然后通过logging.dictConfig配置logging, -
View Code
3.2 通过YAML文件配置
通过YAML文件进行配置,比JSON看起来更加简介明了,
-
View Code
通过YAML加载配置文件,然后通过logging.dictConfig配置logging -
View Code
4 Reference
http://wjdadi-gmail-com.iteye.com/blog/1984354
关于 logging 的一些琐事
python logging 重复写日志问题
本文摘自:http://www.cnblogs.com/zhbzz2007/p/5943685.html
每天记录一点,就能多学一点,充实一点