用复杂矩阵作为初始值解决python中的ode问题

我有一个冯诺依曼方程,看起来像:
dr / dt = – i [H,r],其中r和H是复数的平方矩阵,我需要使用python脚本找到r(t).

是否有任何标准工具来整合这些方程式?

当我用矢量作为初始值解决另一个水生时,如薛定谔方程:
dy / dt = – i H y,我使用了scipy.integrate.ode函数(‘zvode’),但是尝试对von Neumann方程使用相同的函数给出了以下错误:

**scipy/integrate/_ode.py:869: UserWarning: zvode: Illegal input detected. (See printed message.)
ZVODE--  ZWORK length needed, LENZW (=I1), exceeds LZW (=I2)
self.messages.get(istate, 'Unexpected istate=%s' % istate))
  In above message,  I1 =        72   I2 =        24**

这是代码:

def integrate(r, t0, t1, dt):
  e = linspace(t0, t1, (t1 - t0) / dt + 10)
  g = linspace(t0, t1, (t1 - t0) / dt + 10)
  u = linspace(t0, t1, (t1 - t0) / dt + 10)
  while r.successful() and r.t < t1:
    r.integrate(r.t + dt)
    e[r.t / dt] = abs(r.y[0][0]) ** 2
    g[r.t / dt] = abs(r.y[1][1]) ** 2
    u[r.t / dt] = abs(r.y[2][2]) ** 2
  return e, g, u


# von Neumann equation's
def right_part(t, rho):
  hamiltonian = (h / 2) * array(
    [[delta, omega_s, omega_p / 2.0 * sin(t * w_p)],
    [omega_s, 0.0, 0.0],
    [omega_p / 2.0 * sin(t * w_p), 0.0, 0.0]],
    dtype=complex128)
  return (dot(hamiltonian, rho) - dot(rho, hamiltonian)) / (1j * h)


def create_integrator():
  r = ode(right_part).set_integrator('zvode', method='bdf', with_jacobian=False)
  psi_init = array([[1.0, 0.0, 0.0],
                   [0.0, 0.0, 0.0],
                   [0.0, 0.0, 0.0]], dtype=complex128)
  t0 = 0
  r.set_initial_value(psi_init, t0)
  return r, t0


def main():
  r, t0 = create_integrator()
  t1 = 10 ** -6
  dt = 10 ** -11
  e, g, u = integrate(r, t0, t1, dt)

main()

解决方法:

我创建了一个名为odeintwscipy.integrate.odeint包装器,它可以处理复杂的矩阵方程,例如这个.有关矩阵微分方程的另一个问题,请参见How to plot the Eigenvalues when solving matrix coupled differential equations in PYTHON?.

这是代码的简化版本,展示了如何使用它. (为简单起见,我从你的例子中删除了大部分常量).

import numpy as np
from odeintw import odeintw


def right_part(rho, t, w_p):
    hamiltonian = (1. / 2) * np.array(
        [[0.1, 0.01, 1.0 / 2.0 * np.sin(t * w_p)],
        [0.01, 0.0, 0.0],
        [1.0 / 2.0 * np.sin(t * w_p), 0.0, 0.0]],
        dtype=np.complex128)
    return (np.dot(hamiltonian, rho) - np.dot(rho, hamiltonian)) / (1j)


psi_init = np.array([[1.0, 0.0, 0.0],
                     [0.0, 0.0, 0.0],
                     [0.0, 0.0, 0.0]], dtype=np.complex128)


t = np.linspace(0, 10, 101)
sol = odeintw(right_part, psi_init, t, args=(0.25,))

sol将是一个复杂的numpy数组,其形状(101,3,3)保持解rho(t).第一个索引是时间索引,其他两个索引是3×3矩阵.

上一篇:python – 使用PyDSTool解决网络上的ODE


下一篇:在Python中计算大型复杂数组的指数[exp()]函数的最快方法