我眼中的Adaboost

步骤:

def buildStump(dataArr,classLabels,D):

1。循环取出数据集中的一个特征(一列)输入 (for:)

  2。循环调整阀值threshVal  (for:)

    3,。分成两个子树

    左边:特征值xi<=threshVal 为-1,否则为1

      获得预测结果1

    右边:特征值xi>threshVal 为-1,否则为-1

      获得预测结果2

    4。分别把预测结果同真实标签比较,获得一个向量(对的为零,错误为1)

    5。和权重向量D相乘,获得一个值(权重错误值,用来计算alpha),评判分类器的好坏。

    5。获得最低的错误率结果保存起来

返回:单层决策树(弱分类器),最小错误,预测的标签

循环结束后,每一个特征都对应一个阀值,而这个阀值,可以最大准确度地分割特征

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

以上的过程就实现一个分类器,接下来通过训练,来获取一定数量较好的弱分类器

def buildStump(dataArr,classLabels,D):

1。 初始化权重D(它与上述过程中的权重D是同一个,它的作用是增加错误分类的权重,降低正确分类的权重)

2。 迭代过程(for:迭代次数)

  3。 buildStump(dataArr,classLabels,D):(调用上面的过程,创建一个弱分类器)

  4。 计算alpha(Adaboost为每一个弱分类器都分配一个权重alpha,这些alpha值都是基于每一个弱分类器的错误率进行计算)

  5。 保存alpha到决策树集合(弱分类器)中,同时也保存这个分类器

  6。 更新权重向量D

  7。 和真实的标签相比计算错误分类的个数

  8。 计算错误率

  9。 直到错误率为零则退出循环

返回:弱分类器的集合

这个过程结束,就获得一个弱分类器的集合,整体来说分类的效果越来越好

---------------------------------------------------------------------------------------------------------------------------------------------------------

调用训练好的模型进行分类

传入要分类的数据datToClass,传入弱分类器集合classifierArr(也就是训练好的模型)

def adaClassify(datToClass,classifierArr):

  (for:弱分类器的个数)

    1。使用弱分类器i预测结果标签labeli

    2。乘以它的这个弱分类器的权重alpha

    3。累加每一个弱分类器的这个结果(其实就是一个投票过程)

    4。获得结果

用一个图表示就是这样的

我眼中的Adaboost

为了更好的了解分类器的性能,我们通过画出ROC曲线,来更好的了解。

什么是ROC :https://www.cnblogs.com/zhxuxu/p/9911660.html

接下来是机器学习实战中的代码(详细注释),代码和上面的流程搭配看,希望对你有帮助。

#coding=utf-8
from numpy import * def loadSimpData():
datMat = matrix([[1.0,2.1],
[ 2. , 1.1],
[ 1.3, 1. ],
[ 1. , 1. ],
[ 2. , 1. ]])
classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
return datMat,classLabels def loadDataSet(fileName):
numFeat = len(open(fileName).readline().split('\t'))
dataMat = [];labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr = []
curLine = line.strip().split('\t')
for i in range(numFeat - 1):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat,labelMat def stumpClassify(dataMatrix,dimen,threshVal,threshIneg):
#初始化数据类别都为+1
#分左右子树
#与阀值比较,左子树小于阀值为-1,大于阀值为1。右侧大于阀值为-1,小于阀值为1。
#这两种分法,最后取错误率最低的分法
retArray = ones((shape(dataMatrix)[0],1))
if threshIneg =='lt':
retArray[dataMatrix[:,dimen] <= threshVal] = -1.0
else:
retArray[dataMatrix[:,dimen] > threshVal] = -1.0
return retArray def buildStump(dataArr,classLabels,D):
dataMatrix = mat(dataArr); labelMat = mat(classLabels).T
m,n = shape(dataMatrix)
numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1)))
minError = inf
#循环取样本的第i个特征
for i in range(n):
#求出每一列的最大最小值
rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max();
#步长
stepSize = (rangeMax-rangeMin)/numSteps
#这一个循环用来调整阀值
for j in range(-1,int(numSteps)+1):
for inequal in ['lt', 'gt']:
#计算阀值
threshVal = (rangeMin + float(j) * stepSize)
#计算预测标签
predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal)
#错误矩阵,用来记录预测错误的样本
errArr = mat(ones((m,1)))
#实际标签与预测标签相等的为0
errArr[predictedVals == labelMat] = 0
#权重向量D乘错误矩阵,预测正确的权重为零,权重就无需更改
weightedError = D.T*errArr
#与最小错误比较
#print ("split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError))
if weightedError < minError:
#更新最小错误
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal print ("bestsplit: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (bestStump['dim'], bestStump['thresh'], bestStump['ineq'], minError))
#返回的是bestStump中保存的单层决策树(就是选择出了两类中能使错误率降到最低的特征)
#最小错误率,最好的类别预测
return bestStump,minError,bestClasEst def adaBoostTrainDS(dataArr,classLabels,numIt=40):
weakClassArr = []
m = shape(dataArr)[0]
#D是一个概率分布向量,其和要等于1,因此要除以m
#权重的初始化可以是一样的随着迭代次数增加
#增加错误分类的权重,降低错误分类的权重
D = mat(ones((m,1))/m)
aggClassEst = mat(zeros((m,1)))
for i in range(numIt):
#创建一个弱学习器(树根)
bestStump,error,classEst = buildStump(dataArr,classLabels,D)
print ("D:",D.T)
#Adaboost为每一个弱分类器都分配一个权重alpha
#这些alpha值都是基于每一个弱分类器的错误率进行计算
#计算公式alpha = 1/2ln(1-c/c)
#c是错误率c=错误分类的样本个数/所有样本总数
#为了防止分母为零,增加1e-16
alpha = float(0.5*log((1.0-error)/max(error,1e-16)))
#存到树根中
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
print ("classEst: ",classEst.T)
#更新权重向量D
#正确分类的expon为负(权重影响小)
#错误分类的expon为正(权重影响大)
#这里正确标签和预测样本标签相乘,标签一样为正,不一样为负
expon = multiply(-1*alpha*mat(classLabels).T,classEst)
D = multiply(D,exp(expon))
D = D/D.sum() aggClassEst += alpha*classEst
#sign if a>0 return 1,if a<0 return -1,if a==0 return 0
#计算错误分类的个数
aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))
#错误率
errorRate = aggErrors.sum()/m
print ("total error: ",errorRate)
if errorRate == 0.0: break
#返回每一次迭代获得的最好结果的分类器
#弱分类器参数集合,和每一个弱分类器对应的alpha(权重)
return weakClassArr,aggClassEst def adaClassify(datToClass,classifierArr):
dataMatrix = mat(datToClass)
m = shape(dataMatrix)[0]
aggClassEst = mat(zeros((m,1)))
#classifierArr是最优分类器的集合
for i in range(len(classifierArr)):
#调用训练好的分类器参数
classEst = stumpClassify(dataMatrix, classifierArr[i]['dim'],\
classifierArr[i]['thresh'],\
classifierArr[i]['ineq'])
#这些分类器使用投票的方式,获得最终的预测结果
aggClassEst += classifierArr[i]['alpha']*classEst
print (aggClassEst)
return sign(aggClassEst) #ROC曲线的绘制及AUC计算函数
def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0)
#AUC的值
ySum = 0.0
#计算分类为正的个数
numPosClas = sum(array(classLabels)==1.0)
yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)
#predStrengths是投票预测结果(非整数),argsort()从大到小排序,返回下标
#也就是预测结果接近于1(分类为正)的排在前面
sortedIndicies = predStrengths.argsort()
#print('predStrengths',predStrengths)
#print('classLabels',classLabels)
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
#classLabels是真实结果,通过比较,为正类,移动y轴,否则移动x轴
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show() def test():
datMat,classLabels = loadSimpData()
#D = mat(ones((5,1))/5)
#buildStump(datMat,classLabels,D)
#以上就构成了一个弱分类器
#接下来训练出多个弱分类器,构成Adaboost算法
classifierArray = adaBoostTrainDS(datMat,classLabels,numIt=9)
print(classifierArray)
#接下来进行测试 #实例对马疝病数据集分类使用Adaboost
def app():
datArr,labelArr = loadDataSet('horseColicTraining2.txt')
classifierArray = adaBoostTrainDS(datArr,labelArr,10) testArr,testLabelArr = loadDataSet('horseColicTest2.txt')
prediction10 = adaClassify(testArr,classifierArray)
errArr = mat(ones((67,1)))
errArr[prediction10!=mat(testLabelArr).T].sum()
#画ROC曲线图
def plotROCtest():
datArr,labelArr = loadDataSet('horseColicTraining2.txt')
classifierArray,aggClassEst = adaBoostTrainDS(datArr,labelArr,10)
plotROC(aggClassEst.T, labelArr)

测试代码时,可以分别运行

def test()
def app()
def plotROCtest()

实现具体的功能
 

我眼中的Adaboost

上一篇:Unity C# Texture图像高校传输到C++ dll的方法


下一篇:git安装教程(windows安装)