Description
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:
左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全*这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦。
Input
第一行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分第一部分共N行,每行M-1个数,表示横向道路的权值. 第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 输入文件保证不超过10M
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
题解
因为我这个煞笔还不会网络流>.<
这道题让左上到不了右下,就是要找一条左下到右上的路切断,当然这条路是最短的
于是建一个新图,把边视为点,同一个三角形的两条边两两连接,在新图上求最短路
那么这是一个稀疏图,于是用spfa解决
其实不用建图,spfa扩展时处理即可,另外这是一个点权图,但其实也是一样的
很多最短路题都不是裸的
有的需要对一个看似抽象的事建图
有的需要把一个图转成另一个图
一般怎么转呢
取反/边变成点/点变成边/...当然也有更活的
感觉还是很考察建模能力的
也是很有意思的
代码
填了多年的坑,爽哉。
用数组模拟队列就RE了,还是要用STL。
再次repeat一下spfa,小于就更新,不在就入队。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=1e3+; int n,m,e[][maxn][maxn];
int inque[][maxn][maxn],dist[][maxn][maxn];
int d[][][]={{{,-,},{,,},{,-,},{,,}},
{{-,,-},{-,,},{,,-},{,,}},
{{-,,},{-,,},{-,,},{-,,}}};
queue<int>q[];
int ans; int cango(int w,int x,int y){
if(x<||x>n||y<||y>m) return ;
if(w==&&y==m) return ;
if(w==&&x==n) return ;
if(w==&&(x==n||y==m)) return ;
return ;
} void init(int w,int x,int y,int dd){
if(dd+e[w][x][y]>=dist[w][x][y]) return;
else dist[w][x][y]=dd+e[w][x][y];
if(inque[w][x][y]) return;
q[].push(w);q[].push(x);q[].push(y);
inque[w][x][y]=;
} int spfa(){
for(int i=;i<n;i++) init(,i,,);
for(int i=;i<m;i++) init(,n,i,); while(!q[].empty()){
int w=q[].front(),x=q[].front(),y=q[].front(),dd=dist[w][x][y];
q[].pop();q[].pop();q[].pop();
inque[w][x][y]=;
if(w==&&x==) ans=min(ans,dd);
if(w==&&y==m) ans=min(ans,dd);
for(int i=;i<;i++){
int wn=w+d[w][i][],xn=x+d[w][i][],yn=y+d[w][i][];
if(cango(wn,xn,yn))
init(wn,xn,yn,dd);
}
};
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<m;j++) scanf("%d",&e[][i][j]);
for(int i=;i<n;i++)
for(int j=;j<=m;j++) scanf("%d",&e[][i][j]);
for(int i=;i<n;i++)
for(int j=;j<m;j++) scanf("%d",&e[][i][j]); memset(dist,,sizeof(dist));
ans=dist[][][]; spfa();
printf("%d\n",ans);
return ;
}