Isaacs, $\textit{Character Theory of Finite Groups}$, Lemma(2.3)
- Similar $F$-representations of $G$ afford equal characters.
- Characters are constant on conjugacy classes of a group.
Pf:
- $tr(P^{-1}AP)=tr(A)$
- $\mathfrak{X}(h^{-1}gh)=\mathfrak{X}(h)^{-1}\mathfrak{X}(g)\mathfrak{X}(h)$, and hence $tr(\mathfrak{X}(h^{-1}gh))=tr(\mathfrak{X}(g))$