Haar特征

转自:http://blog.csdn.net/carson2005/article/details/8094699

Haar-like特征,即很多人常说的Haar特征,是计算机视觉领域一种常用的特征描述算子。它最早是由Papageorigiou等人用于人脸描述。目前常用的Haar-like特征可以分为三类:线性特征、边缘特征、点特征(中心特征)、对角线特征。如下图所示:

Haar特征

显然,边缘特征有4种:x方向,y方向,x倾斜方向,y倾斜方向;线特征有8种,点特征有2种,对角线特征有1种。每一种特征的计算都是由黑色填充区域的像素值之和与白色填充区域的像素值之和的差值。而计算出来的这个差值就是所谓的Haar-like特征的特征值。

上一篇:Gradle学习系列之七——依赖管理


下一篇:V7000数据恢复(存储文件系统损坏)案例_北亚数据恢复