POJ 3422 Kaka's Matrix Travels
题意:有一个N*N的方格,每一个方格里面有一个数字。如今卡卡要从左上角走到右下角,规定每次仅仅能向下或者向右走。每次走到一个格子,将得到该格子的数字,而且该格子的数字变为0。当卡卡走一次时,非常easy求出最大值,问卡卡走k次,可以得到的最大值为多少。
思路:最小费用最大流
关键是怎样构图
1. 将N*N个格点拆分为两个点(i,i + N*N),每一个点之间连一条流量为1,费用为-w的边。再连一条流量为k,费用为0的边。这样就保证了每一个点之间能够走k次。且最多仅仅有一次能拿到费用。
2. 将每一个点与其以下、右边的点连边。流量为k。费用为0.
3. 构造两个源点、汇点。
源点和左上角连边,流量为k,费用为0. 右下角与汇点连边。流量为k,费用为0.
至此,容量网络已经构成。
每次在残余网络中找费用最短路进行增广就可以。
代码:
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF (1 << 20)
#define LINF (1LL << 60)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, a, n) for (int i = a; i < n; i++)
#define per(i, a, n) for (int i = n - 1; i >= a; i--)
#define eps 1e-6
#define debug puts("===============")
#define pb push_back
#define mkp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m)
typedef long long ll;
typedef unsigned long long ULL;
const int maxn = 5555;
const int maxm = 500000;
struct node {
int v, cap, nxt, cost;
} e[maxm * 2];
int g[maxn], cnt, st, ed, n, m;
int ans, flow;
int nt, k;
void add(int u, int v, int cap, int cost) {
e[++cnt].v = v;
e[cnt].cap = cap;
e[cnt].cost = cost;
e[cnt].nxt = g[u];
g[u] = cnt; e[++cnt].v = u;
e[cnt].cap = 0;
e[cnt].cost = -cost;
e[cnt].nxt = g[v];
g[v] = cnt;
}
void init() {
cnt = 1;
ans = flow = 0;
memset(g, 0, sizeof(g));
// 加边
int w;
int p = nt * nt;
for (int i = 1; i <= nt; i++) {
for (int j = 1; j <= nt; j++) {
scanf("%d", &w);
int id = (i - 1) * nt + j;
add(id, id + p, 1, -w);
add(id, id + p, k, 0);
if (i < nt) add(id + p, id + nt, k, 0);
if (j < nt) add(id + p, id + 1, k, 0);
}
}
st = 0, ed = p * 2 + 1;
n = ed;
add(st, 1, k, 0);
add(p * 2, ed, k, 0);
} int dis[maxn], que[maxn], pre[maxn];
bool vis[maxn];
bool spfa() {
int font = 0, rear = 1;
for(int i = 0; i <= n; i ++) {
dis[i] = INF;
vis[i] = false;
}
dis[st] = 0;
que[0] = st;
vis[st] = true;
while(rear != font) {
int u = que[font++];
font %= n;
vis[u] = false;
for(int i = g[u]; i; i = e[i].nxt) {
int v = e[i].v;
if(e[i].cap && dis[v] > dis[u] + e[i].cost) {
dis[v] = dis[u] + e[i].cost;
pre[v] = i;
if(!vis[v]) {
vis[v] = true;
que[rear++] = v;
rear %= n;
}
}
}
}
if(dis[ed] == INF) return false;
return true;
}
void augment() {
int u, p, mi = INF;
for(u = ed; u != st; u = e[p ^ 1].v) {
p = pre[u];
mi = min(mi, e[p].cap);
}
for(u = ed; u != st; u = e[p ^ 1].v) {
p = pre[u];
e[p].cap -= mi;
e[p ^ 1].cap += mi;
ans += mi * e[p].cost; // cost记录的为单位流量费用。必须得乘以流量。
}
flow += mi;
}
int MCMF() {
init();
while(spfa()) augment();
return ans;
}
int main () {
while(~scanf("%d%d", &nt, &k)) {
printf("%d\n", -MCMF());
}
return 0;
}