Python 主成分分析PCA

  主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维、去噪的有效方法,PCA的思想是将n维特征映射到k维上(k<n),这k维特征称为主元,是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。

相关知识

介绍一个PCA的教程:A tutorial on Principal Components Analysis ——Lindsay I Smith

1.协方差 Covariance

  变量X和变量Y的协方差公式如下,协方差是描述不同变量之间的相关关系,协方差>0时说明 X和 Y是正相关关系,协方差<0时 X和Y是负相关关系,协方差为0时 X和Y相互独立。

  Python 主成分分析PCA

  协方差的计算是针对两维的,对于n维的数据集,可以计算C(n,2)种协方差。 n维数据的协方差矩阵的定义如下:
  Python 主成分分析PCA
      Dim(x)表示第x维。

对于三维(x,y,z),其协方差矩阵如下,可看出协方差矩阵是一个对称矩阵(symmetrical),其对角线元素为每一维的方差:
    Python 主成分分析PCA

2.特征向量和特征值 

  Python 主成分分析PCA,则称Python 主成分分析PCA是A的特征值,X是对应的特征向量。可以这样理解:矩阵A作用在它的特征向量X上,仅仅使得X的长度发生了变化,缩放比例就是相应的特征值Python 主成分分析PCA。特征向量只能在方阵中找到,而且并不是所有的方阵都有特征向量,并且如果一个n*n的方阵有特征向量,那么就有n个特征向量。一个矩阵的所有特征向量是正交的,即特征向量之间的点积为0,一般情况下,会将特征向量归一化,即向量长度为1。

3.PCA过程

  第一步,获取数据,下图中的Data为原始数据,一共有两个维度,可看出二维平面上的点。

  Python 主成分分析PCA

  下图是Data在二维坐标平面上的散点图:

  Python 主成分分析PCA

  第二步,减去平均值,对于Data中的每一维数据分别求平均值,并减去平均值,得到DataAdjust数据。

  第三步,计算DataAdjust的协方差矩阵

  Python 主成分分析PCA

  第四步,计算协方差矩阵的特征向量和特征值,选取特征向量

  Python 主成分分析PCA
   Python 主成分分析PCA

  特征值0.490833989对应的特征向量是(-0.735178656, 0.677873399),这里的特征向量是正交的、归一化的,即长度为1。

  下图展示DataAdjust数据和特征向量的关系:

  Python 主成分分析PCA

  正号表示预处理后的样本点,斜着的两条线就分别是正交的特征向量(由于协方差矩阵是对称的,因此其特征向量正交),特征值较大的那个特征向量是这个数据集的主要成分(principle component)。通常来说,当从协方差矩阵计算出特征向量之后,下一步就是通过特征值,对特征向量进行从大到小的排序,这将给出成分意义的顺序。成分的特征值越小,其包含的信息量也就越少,因此可以适当选择。 

  如果数据中有n维,计算出n个特征向量和特征值,选择前k个特征向量,然后最终的数据集合只有k维,取的特征向量命名为FeatureVector。

   Python 主成分分析PCA

  这里特征值只有两个,我们选择其中最大的那个,1.28402771,对应的特征向量是Python 主成分分析PCA

  第五步,将样本点投影到选取的特征向量上,得到新的数据集

  假设样例数为m,特征数为n,减去均值后的样本矩阵为DataAdjust(m*n),协方差矩阵是n*n,选取的k个特征向量组成的矩阵为EigenVectors(n*k)。那么投影后的数据FinalData为

Python 主成分分析PCA

  这里是FinalData(10*1) = DataAdjust(10*2矩阵)×特征向量Python 主成分分析PCA

  得到结果为

  Python 主成分分析PCA

  下图是FinalData根据最大特征值对应的特征向量转化回去后的数据集形式,可看出是将DataAdjust样本点分别往特征向量对应的轴上做投影:

  Python 主成分分析PCA

  如果取的k=2,那么结果是

Python 主成分分析PCA

  可见,若使用了所有特征向量得到的新的数据集,转化回去之后,与原来的数据集完全一样(只是坐标轴旋转)。

Python实现PCA

  将数据转化成前K个主成分的伪码大致如下: 

'''
减去平均数
计算协方差矩阵
计算协方差矩阵的特征值和特征向量
将特征值从大到小排序
保留最大的K个特征向量
将数据转换到上述K各特征向量构建的新空间中
'''

  代码实现如下:

from numpy import *

def loadDataSet(fileName, delim='\t'):
fr = open(fileName)
stringArr = [line.strip().split(delim) for line in fr.readlines()]
datArr = [map(float,line) for line in stringArr]
return mat(datArr) def pca(dataMat, topNfeat=999999):
meanVals = mean(dataMat, axis=0)
DataAdjust = dataMat - meanVals #减去平均值
covMat = cov(DataAdjust, rowvar=0)
eigVals,eigVects = linalg.eig(mat(covMat)) #计算特征值和特征向量
#print eigVals
eigValInd = argsort(eigVals)
eigValInd = eigValInd[:-(topNfeat+1):-1] #保留最大的前K个特征值
redEigVects = eigVects[:,eigValInd] #对应的特征向量
lowDDataMat = DataAdjust * redEigVects #将数据转换到低维新空间
reconMat = (lowDDataMat * redEigVects.T) + meanVals #重构数据,用于调试
return lowDDataMat, reconMat

  测试数据testSet.txt由1000个数据点组成。下面对数据进行降维,并用matplotlib模块将降维后的数据和原始数据一起绘制出来。

import matplotlib
import matplotlib.pyplot as plt dataMat = loadDataSet('testSet.txt')
lowDMat, reconMat = pca(dataMat,1)
print "shape(lowDMat): ",shape(lowDMat) fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(dataMat[:,0].flatten().A[0],dataMat[:,1].flatten().A[0],marker='^',s=90)
ax.scatter(reconMat[:,0].flatten().A[0],reconMat[:,1].flatten().A[0],marker='o',s=50,c='red')
plt.show()

  结果如下图:

Python 主成分分析PCA

Python环境

1.编译环境:win8.1 + 32位 + python2.7

2.相关模块安装:

  (1)Numpy和Scipy:numpy用于存储和处理大型矩阵,进行数值计算。scipy是基于numpy的科学和工程计算工具,用于处理多维数组向量、矩阵、图形(图形图像是像素的二维数组)、表格。下载地址:http://www.scipy.org/scipylib/download.html

  (2)Matplotlib:python的一个图形框架,用于数据绘图。win32的安装文件下载地址:http://matplotlib.org/downloads.html

  (3)Dateutil 和 Pyparsing模块:安装配置matplotlib包时需要。win32的安装文件下载地址:http://www.lfd.uci.edu/~gohlke/pythonlibs/

3.编译遇到问题:

  (1)提示“No module name six”,将\Python27\Lib\site-packages\scipy\lib中的six.py six.pyc six.pyo三个文件拷贝到\Python27\Lib\site-packages目录下即可。

  (2)提示 “ImportError: six 1.3 or later is required; you have 1.2.0”,说明six.py版本过低,下载最新的版本,将其中的six.py替换\Python27\Lib\site-packages中的six.py即可,下载地址:https://pypi.python.org/pypi/six/

  注:six模块是Python 2和3的兼容工具

PCA可以从数据中识别其主要特征,它是通过沿着数据最大方差方向旋转坐标轴来实现的。其中的矩阵运算,求特征值、特征向量等不是很熟悉,仍需进一步学习。

上一篇:js使用canvas在前端压缩图片


下一篇:初识Djiango