POJ 3321 树状数组(+dfs+重新建树)

Apple Tree
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 27092   Accepted: 8033

Description

There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. Kaka likes apple very much, so he has been carefully nurturing the big apple tree.

The tree has N forks which are connected by branches. Kaka numbers the forks by 1 to N and the root is always numbered by 1. Apples will grow on the forks and two apple won't grow on the same fork. kaka wants to know how many apples are there in a sub-tree, for his study of the produce ability of the apple tree.

The trouble is that a new apple may grow on an empty fork some time and kaka may pick an apple from the tree for his dessert. Can you help kaka?

POJ 3321 树状数组(+dfs+重新建树)

Input

The first line contains an integer N (N ≤ 100,000) , which is the number of the forks in the tree.
The following N - 1 lines each contain two integers u and v, which means fork u and fork v are connected by a branch.
The next line contains an integer M (M ≤ 100,000).
The following M lines each contain a message which is either
"C x" which means the existence of the apple on fork x has been changed. i.e. if there is an apple on the fork, then Kaka pick it; otherwise a new apple has grown on the empty fork.
or
"Q x" which means an inquiry for the number of apples in the sub-tree above the fork x, including the apple (if exists) on the fork x
Note the tree is full of apples at the beginning

Output

For every inquiry, output the correspond answer per line.

Sample Input

3
1 2
1 3
3
Q 1
C 2
Q 1

Sample Output

3
2

Source

POJ Monthly--2007.08.05, Huang, Jinsong
题意:
一棵苹果树,每个节点最多结一个苹果,最初每个节点都有一个苹果,非二叉树,有两种操作,Q X,表示X节点的子树共有几个苹果,C X,表示X节点摘掉一个苹果或长出一个苹果(有就摘,没有就长)
aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADHAagDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzzS01qAPN/EHxJ1yfxvceHfCOh2utyaO0D6413eG2aGOVdyLCNpEjlfmwSq4BGckCusHjbQ08UR+Gn1KBdfe3+1Lp5fMpj/vY/CuW8beDPCniDxHbX97rsujX9uV+0x2OpfZTdoPmRJwCCwBwR0PbOOK4u48MB/2gl8WJrWinQWtYiSbxAyyIpTb5X8T9CJdw2g7dp60x2Pegc0tYy+LtCUEf2zYD63KD+tKPGGhEZ/tiw/8CU/xpBY2KKy4fFOjXMyRQ6rZSyuQqolwhZiegAzzWmDmgQtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigBaQnFJvGcZ5+tYfiTxxofhNFOq6nBZswJWJ3+dsdcKOT1oA3C4H86aWBIHfHFeeS/EXX/EgEfg/wvNc5POoa4zWNoq4yCDtZ3z22IRnqV60r/DfWfEgYeLPFVzeWz/f0/RlbT4MY6FlYynBPUOOmcDpQM474ReCdA8UXnxHutX0ax1S4TxjfxpNdQK7BAkW1QSOg9K9A/4VN4K/6FXSf/ANOf0ry74TeNvCfwlsPiFp+talaeH7a18VahNDDOduICIiHH97JJOeSSTnJzXo8Xxp8DTRo6+JrLbIAwy5Bxj6VaLWx454w+KHwy8Bpq6a14A0zTruwmMUMdw9lGjnBKCSQuEgZ8fKrkEj8cex6T8NfBGr6VZ3y+E9HRbmFJgogikC7gDjcuVP1BIrza4/4V9q+qQa5L8TXu9WtizaZf8AmRN9liJyUA2bZBnuwPQeldl4P+IHw38EeHLHw7pvieyFrp8IRUaXLgEk7mGO5JPTHNNXuBi/HH4feGPD/wAMtQv9N8P6bY3sN3YmOeC3VHQm7hGQRz0J/OvcEGBXhXxq+JXhbxP8Ob7S9K1u11DUbi7sVitoSWdyLuFsAAein8q91U5FQyWOooopEhRRRQAUUUUAFFFFABRRRQAUUUlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhOKAFopu8ZxTJrqK3heWWRYo0G5nchQo9ST0oAkzQWrz69+NGkz39zYeHrDUfFt5bSGKY6Rbl4InBwyNOcRhhxld2eQcYqFtI+Ivi0gX2r2HgzTmBDQ6Qn2u+IOCD50o8uJhjBAjlBBOGHFMZ2+r+ItM0C2a41K/t7CBQSXuJAg9e9cVcfFe41uRo/CHh+88QIAduov/AKPZZBwcSNy/1UEe/WtHRvhD4a0mYXM1iNX1E4L32qMbmZ3zndlshTn+6B6dK7FIhEgVAEUdFAwBSA8/m8HeMPFK41vxL/YsHRrTw+pUkcHPnOMg544GK3PDfw28P+FJJJtP09PtchzJd3LtPMx7ne5JGTzgYGSeK6cDFLQIYEx0NH3fenE4rjviBr1zEttoWkMDrmq5jiOM/Z4uBJM2DnAyB9SKAMG7srT4o+M5oPsdvP4e0S4Md7JLGpa7vUClYypH3EDA7u5wOnNbXxKv7HwX4D1rVo7S0imt7crAzQKVErkJFkY6b2XPtmuj8P6FbeG9HtNNsgVtraNY1Lcs2B95jjlj1J7k1xnxkjbVLXw7oWBImp6rCs8JHyvAp3Pn2DbD68Uxmr8O/A1n4T8C6Ho8un2kc1raqJ0ijBQTH5pNvHQuzEDtmsDw1ounr8YfF5FhbD/RrYZ8legReOnvXpoNcB4dO74yeLCM4FlaqfrtyT+RH5UAdsmlWcbK0drAjKcqwjGVPt6VbAIHNApaQgooooAKKKKACiiigAooooAKKKKAEJwcVDPfQWphEs0cZmbZHvYDe2C2BnqcAnHoD6Vw/jzxdrcfiSx8K+F1sU126tHvjcaoH+zpCrBCMLyzEnoOw561w/7SWvXFp8EbHVb++sfDepieC4+2TBbm3s51Rn3g5DOFIJATLPgIAQxoA9qttZsL2RI7e8t55HTeqxSqxK4U5AB5GHU/8CHqKnW7ha5e3EqGdFDvGGG5VJIBI64ODg+xr88Pg9Z+MdKHg2PS/GFv/wAJUdM0nSLOG10+2uYI0klCX6rMr/O6W9i8megEKLgHr2PxN8Yarbn432cfiOyvoksJzNdWdrcLeGWK22CCUqf3MSD5wUILybwozk0AfcCTpIMowceqnIp4Oa+WP2TJTH8V/iHaxMUtE0XRJEgU3YjDtLqIdgtySwJ2rkjg7R36/Uy9KAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOKWmnrQAhlVWAJAJ6DPWl3A9Oa8J8b2sTfFbd4ltdeup2vbVvC0mitKscKBY/P8zaQmd4lLeZnKHAwerPCXxpu/E/7Uet+EpBe2OmWejuILK4tJEEssN00clx5hXaVYMm3BJIHTg0Ae9daWm7setBcD6etAC0FgK5vxH8RPD/hZCb7UEMudotrcGWZjxkBFyT1B6dK59PF/i/xTvXQ/Dn9k2rAKL7XHMZBPUrEuSeCMZI5yO1AHoTSKgJPQDNcbq/xf8L6XOLePURqV42AtrpqG4kYnoAEyOeg+orPb4V33iFg3ivxNfatCcFrCzP2S2PfB2fORkKeGHSuy0jw7pugQeTpmnWmnQ8/u7SFY19+FA60xnEDWfiF4vYDTNIs/B2nt/wAvmtt9quz3UrbRnaAw4O+RWXnKnpUknwR0fXSZPFd5f+L2Yktb6nORZnP3lNsmI3Q8ZWQOOB759EC0opCuVdO0y20iygs7G2hs7OBBHDb26BI40HRVUAAAeg4FWlGBilooAKKKKACkJwaWmOcflmgDO8R6/a+GtHutSvGZYLdNxC/eY9Aq+5JAHuawPAfh263y+JNajC6/qCYaPBH2WDOUgA7YGN3qRVC3RPiT4pNzKTL4c0adTbIBmO7u1Y/vN2eVjI4HTdznjn0BelAwyF6157q841X43aJp4Vj/AGdpMuoOJB8h3yeUhX/aBDdex9q9Bc//AK689+HO7WfGvjrXZGYk3qaVDG3Kxpbg52n/AG2kLEdKBHoQBA/wrgPDv/JY/FgPBNnasOf4duB+oNegdPrXn/h7j4x+LMjk2Vrg/wCzt4/XdQB6CKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFAHN+N/h9o/xAsYrbVop/wB0xaKe0uZLeaPI5CyRkMAeMjODgZ6Csb4gfCyPxZ8P4PCGlT2ug6YpiiJS0ErQQJ0+z8gRTKQrJLhtjKDtNd7RQB4ro/7OLaJYS3MHiWUeKYLl7rTdZS1EYhYlt3mxKwExkDESkkbhjaE2ptd42/ZotviDFdS6r4y8R2uo3nyXM+l3KQRtCY2R4BCVZChLlwXDODjDcV7RRQB5v4C+DTeCPGep+J5/F2veItR1Gwh06ddUkiMZjikkeIgJGpBUzTYOf+Wh9sejgYpaKACiiigAooooAKKKKACiiigAooooAKKKKACmsM0pOKZJOkUbO7BEUZLMcAD3oA8rvb/xx4l+IXiXS9C8Q6XomnaULZUS50prqSRpIg7MW81ABzgDFKPBnxGW9N2PGnh77YYxEbj/AIRk+YUByE3faM4yx49z6074aa/p3iH4l/EW50y9hv7ZJrOJpbdtyh1tlyM9/wAK9KyO/HTvVpFpHm8/hr4rCCTyfHmhNNtPliTw44UtjjJFx06dB61y+q/Cn4t+LLbT/wC2/ifpVqY4iLmw0zQnWCSQ/wAXmfaFcgDIA4HPIrP8ZQapd698VLS3k1h7eW80aSRUkkWMWmIluBAykFRtWTcEIPPWvSPg3bXFp4ISOZbpLUXU32FLyR3kW13nyQS5LH5cY3EmhIehzmhfCrxn4dbdp/inw3av/FNH4aYysPQu1yWP4muz+DnibUfGfww8Oa1qxgbU720SW4a2QpGX7lVJJAPXGTiupGOfcVwX7On/ACRLwh/14pSZLPRgMUtFFSSFFFFABRRRQAUUUhbFAATiuJ8e67d3d7b+FNEcLrN+okmm3FfsdnvCyzDjl+cKOMnntW/4p8R23hbRLnUrpZHihAxFCu6SRiQAir3JOBj3rH+H3hi60y2vNW1dYv8AhIdWk868aIkiNRny4VJycIp/76Lc9KAOg0TRrfQNHtNNs12W1rGIkB6kDufUnqT3JzV9cgc0AYFBOKAKesXw0zSry8Yqq28DykucL8qk8+3Fcp8GLFrP4d6ZIyusl1vum3997Egj2IwR9ab8adSksvh1qkNvse8vtllbxSdHeRwpA99pY57YrrtH06LR9Js7CAsYLWFIIy5y21QFGffAoAtY7V5/4dI/4XD4tC8/6Lakk9m2jj8sc+9egnrXn3hw/wDF4/F2Dx9ltRj32CgD0EUtIKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKazhepxXHWHxl8EanDrs1r4m0+aHQ8/2jIJcLb4zkknqODyMjigDs6KqaTq1nrumW2oafcx3dlcxiWGeI5V1IyCDVugAopCQOtIXA7GgBc0yWZIVLOQqgElicAD3NcXqXxTsJNTk0rw/azeJ9UjwJU08jyYM5x5kx+Reh4yTx0qCL4fal4mmF14v1U3iZJXSNOkeG0QZ4DMMNLjHVsDkggigCzqHxHhvr6bS/DEC6/q0XEm19ttB82CJZcEKeDwASaqj4b3nihhL4x1ZtViHTS7QGGz7csB8znjuQMEggiu007S7bSLSO1sbeGzto12pFAgRVA6YA4q0oIHNAHmknw117QvFGr6l4W1aw0uy1JIA1lJZjbCY02ApjsQBxVn+wPiKMD/hJdL/8AzXolc38QfEzeE/C15e26rJqDL5NjC+SJbl+IlI9N3J9ACe1O402ed+H7v4k+IfEuuWtv4g0f+zNNZLb7QLM7pLjG6Qem1dwH1z1GKb4vvPiV4a1PwnbR67pNwNa1ddOkZrQjyl+zTzF19/3IGP9o16V4E8Np4U8K6fpylnmRN9xNJgvLM3zSOxHcsSfT04xXM/FnA8Q/DAEA/8AFUrwTj/lwvaLhckTQfiIGyfEelMM9DZnkelbnw18Ht4A8CaL4ee6+3Pp9uIWuNu3zCO+O1dKvelouFwooopCCiikJxQAtFN3jHHP0pQd2fyoAWo5XWMFmYKAMkk8D608sB14rhvHN5P4i1W28JafM0X2hfN1S5iwxt7bnCkZ4MhBUegyfqAVrCP/AIWJ4v8A7SlzJ4d0d1NgCo8u6uupnVupCY2gdCSx7CvQVJI5qrpWl22i6ba6fYwpbWVrEsEMMf3URQFVR9AAKt0ALSHPalpCaAPPfiWV1TxP4J0M8m51Brxs9CkCbiM9idw/I16EvSvMLDUh4l/aC1WGGbfb+GdHihnt5ExsuLlvMjkQ9wYkdT7jFenjpQAGvPvDzH/hcXizdwfsVrgeq7euPrkfhXoJrz7w8MfGLxZznNpan6fL939M/jQB6CKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZXinR38QeHtR01JzbPdQNEJRn5SR6AjNePx2XxAtvBuoWlr4A0m31bR9MXT9NuHu4JJL9gy/PEekUZC7ismDvK8HGT61401mfw94U1XU7VI5bm1tnliSXIQsBxnHOM1yNinj3xHpOmalBrGk6at1aRTtAtuZAGZQxwSPf9KAN74W6QdD8B6VZvo9xoUyq8k1jdXKXMqSvIzyM8sZKuzuzOSOMueB0HUlgK88/sP4iAf8jPpf0+xf8A1qw/EHgX4j+JnsgnxDj0y1t5S00WmWqRtckEYUykEqAQcheucEjFOw7HZ+IPiXpWjXkmn2qz61rCj/kH6anmyAnoHI4QcjJJ4BycDmse38I+IPHMTXHivULjS7Gfp4f06YKI0y3yy3CHLsQVJ2EYK8E5NU9L8D+MdCilTTNW0PT45ZDK62+nhdzE5JJ6t9Tk89avfD/W/EcnjHxHoWvXlnqH2BLeWCe2h8psOmWDDvzQB2mjaDp/h6wSy0yygsLSMkrDbxhFyTknA7nqT1PfNX1GBQowKWkIKKKKAELBetee6on/AAmHxWsbNcSaf4diNzcq2drXUi/uhjuVQ7uf+egIPBB6vxb4ms/B3h2/1m/LfZbOIyMsYy8h6KiDu7MVVR3LAVgfCHw/qGjeDre51tI18RamxvtTMROzz35IXPIUDAA7YxQB2yjArzr4tAHxD8MM4H/FUr1/7B97XooGBXnHxdONf+GHJH/FVL0/68L2gD0deBS0lLQAUUUUAFcv8Tjr6/D7xCfCuD4kFjKdPBAI8/adnXjrXUV5J8QLa+8RfGzwv4dXXtU0jS5fD2qX8sOmSpH5ssdzYIjMWVs4WaQYGPvUDRw0mu6T4M+EHxB1L4YXWu315a2cUkn2+eSVBeHeJNjz5CT4KmQfdX92cDPPpfwC8TDxD4C8l5dWnvdLunsrubWbuG8meXasuVuIQI5k2yqAydMFTyppZ/hGl2rpN4x8VSo42ur3sRBUg5BzF0OTxWRp3wn0Dw55eg2PjLXNM+zWxuF021u4IVhhDfM4jWIBV3HnAAyT3zTsOx6H4v8AE0HhXRJr6UGWXKxW9ugJeeZztjjUDnJbH0GSeAaz/APhibQdMkvNSbzte1FvtN/IcHY5/wCWSED7kY+VcDnGepNcND8FNG8V3Wk+I4PHXirUIYYnNlLFqaGL58fvVAQDdgFQ3oxpNf8AC954K8V+Cri08V+IrxLrVBBNbXl3G8MqFG4ZRGCRnngjmgR7KOlLSKMClpCCmt1FOrn/AB9qn9i+DNavQpcw2kjbVfYT8p6HsaAOI/Z8055dG8TeJZJPObxJr13qEQfmWGEEQpAxx/AYnwBwN3HU16sBtGK574daUdD8C6DZMMSRWcXmfLtJcqC5I9SxJPua6KgBD1rz7w5/yWLxcMY/0W1zx/sDnP6fhXoB61wHh/I+MXivcQT9itdp64XHT89x/GgD0AdKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAct8UCB8PtfB4/0R/5VL4KP/FFeHf+wbb9f+ua1X+K08Nv8OvETzzLbx/YpB5jqzKDg4yF5xnGcV534Zg+O9n4b0q3+xfD2LybWKMRyz3wZQEAwfk6+vvTTsNOx6/eYNpOCruDG2Uj+8wx0HvXl/wRguY9T8WzLa6lZ6LNcQfYotShMLKQhEo2Ekk7sEvnDbvanMfjuQc2vw6PH/Pxf4/9ArK0/wAXfGXV/EWtaFb2fgEX2kpA1y0lxfbGEwZlA+TPRTn8OtO5XMe0ZA64ya4Pwrn/AIXR4zPb7HZAc/7BrIz8eD/y7fDof9vF/wD/ABFbHwz8K+MLDxBr2ueMn0MX1+Io4odCaZolRFxljKAd304xihsTdz0YdKWkHTmlqSQprNt7E/SnVU1TUbfSLC5vruUQ2ttE00sjdERQSzfgAaAOG8WEeLviJofh8jztO09P7WvUH3WdWxArf8C+bB9Aewr0JDketcL8KLC4k0i71+/jZNS1uc3cjPw3ldIRjsAmAB6Y713a0ALXnPxa/wCRg+GHGf8AiqV74/5h97Xo1ec/Fv8A5GD4YY4/4qle2f8AlwvaAPRQc0tIvFLQAUUUUAFeXa5/yct4SwMn/hEtZ6Dp/pmmV6jXE+NPhrD4p8TaX4gh1a/0jVdPtLixjls5dqtDM8LurDv80EeD2waaGjrCDx6cV55qHhPVpvjRN4gi022bSW8NSaabrzgJXmacOEZf7oCnn1k+tYHjTw1rukpaaXpXjfWLjxDqEgjto96t5CE4e5dT/wAs4xkkHG44UHJFXfFHgXXvD/gvU9QTx5rU17Z2LyiViAHkVCdxXoMkdKdx3Oi+DPh7UvCnwv0DRtWsIdO1CzhaKW2tn8yKP52wFbuMEVV+J/GveAP+w0nU/wCw1UPDPgHWtV8N6XezeOtbae5tY5nbcFyzKCeBwOtaNv8ACSaTXNI1HUfFGraoumXBuYrWaXETvtKguO+M5HuKTEz0QHNLSClpCCvPvjJm/wBH0jRFVpP7X1O3tZUQ4cwht7kHtgLnPYZNegV594ikOufFjw5pgIaLTYJdSkAOCrcxqf8Ax4D/AIEaBo7+PG3jp6U+moMD8adQIQ1594dCj4xeLQvObS1Lf720ZHvxt59zXoJrz7w8CPjF4tzxmztWGeMjaBn8wR+FAHoIpaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAornvGnj/QPh7pyX3iDUU062kfYjFGkZjjJwqAsQAMk4wB1xWvaarZ38du9tdQ3C3EQnhMUgbzIyAQ64PKnI5HHNAFqkLAHBoBzWJ4y8UW3g7w/d6rdElIVwkSjc0shOERVHJJJAwKAOU8Rp/wALA+IFnoOSdF0PZqWofLkS3Gf9HhPsMGQ9c7QpGGr0Zelcx4B8NXHh3Q2F8ySateTPd30iElWlcjgE9lUIg9kFdOBgUABGTXm/gsf8Xp+JX/XHSu//AEylr0jvXnHgr/ktPxL/AOuOlf8AoqWgD0iiikLYoAWim7vY/lTqAEJxXnvxMJ8S6toHhJCWt7+U3WoIhw32aIg7Wx0Vn2jnghSK726uI7WGSWZhHEiF3duAqgckmuC+FFnLrSal4yvQ4vdblJgSTj7PaJxFEB27sexZiR1oA9AjUIgVQqqvAVRgCnCgDFLQAV5x8XMf8JB8MM4/5GlcZ/68L2vR684+LgJ8QfC/HX/hKl6/9eF7QB6MOntS0g6UFgPqaAFopu4f0oDg0AKTisDxp4vtfB2krdzpJcTTTR2ttawjLzzSOEjQemWYZboByava9rtn4c0ua/vpfKgjwOBlnY8KqgclicAAdTXPeFtButU1OTxHriMLx3b7BaueLOAgbQV6CX72489SBxnIBZ8GeEZdFlv9U1GZLzXdSk8y4nHzCNRwsMZIB8tccDA5JJ6074l5Hw78SgnP/Evn/wDQDXTgYFcz8Tj/AMW88S/9g6f/ANANAFjwISPBOgf9eEH/AKLWt4HNYPgU48E6B/14Qf8Aota3DIqKSxCgckntQA+iqem6vZazYRX2n3cF9ZTDdFc20iyRyDOMqwODz6VbBzQAhrzvwO6+IviR401tWEsFlJHosBK7WR41Dzj3BLR4P+ya76+uo7G1muJSRHChkYjqABk/pXFfBSzePwJFezLGLrU7q41CZkByzSSsQWJ6tt2j2wBzjNAHeL0paSloAQ1594dG34xeLOdwNpanjt8uNv6Z44+avQDxXn/h3afjD4t2ggC0tQx6/NtHI9BjAx6g0AegilppYL14oLgUAOopAQelLQAUUUmecd6AFooooAKKKKACiiigAooooAKKKKACiiigDzP4h6F4j0/xlpfizw5psHiOaCym02bR7q6FsAsjK3no7AjcuzaRjJV2xWD4S0C90f48pPL4duLRH8KwWV1qNhDs0vz45FIiiBfKhRuCjaOMZJxXc/Ebxtd+Do9GjsNL/ta91W+WxhhMwhVWKs25mPb5ayv+Eq+IOf8AkR7T1/5C8f8A8TQB6GDwefyrzm6hPxC+JkcJfd4f8Lus8iq+VudQIPlhgOohXL4P8bRkdOSfxV8RhBJ5PgeyM207N+sJt3Y4z8vTP/6qw/As3xE8K+HLezuPBdjPqEjPcXtymrx4mnclnb7oJGTgZ6KFHanYZ7Enyg59eKd1ry/V/iD440HS7vUbzwTbfZbWMzSiPV0LFR1wNp5r0TRNRTWNHsb+NDHHdwJOqt1AZQwB/OgC53rzjwV/yWn4l/8AXHSv/RUtej96848Ff8lp+Jf/AFx0r/0VLSEejivKfjrrd9YP4c06TWZvCvhbUZpo9Y8Q20vky2gVAYo1lIIh8xiQZDjAHUEivVs4rz3xf8QbdddvPDQ8Kah4lWO2SW7ENukkChycIwbqcDPTHI96AOB+H/xF1S2+KWj+F4fFA8U+Hbu3uI4r67hVC5gXcPKmAzcS4ZfMyAoGGUndge/g7R/hXj2nanZaRrsms2Xwr1S01N4VtzcQ2yKRGucKADgdcZAzit4/FLVR/wAyJr4/7Zr/AI07DsWPitePe2Wl+HLZ2W41y7W2k8s4kS2A3TOv0G0Z/wBuu2sbWKytIreBBFBCojjRRgKoGABXimleLPENz431LxBqngPX18lfselwgIwSHgvKcHhnOOOwFdcPijqo4/4QTX+v/PJf8aB2PQ6K5PwR8QE8ZXeq2j6TfaNe6c6JLb3yBXIZQysME8EGuspEi15z8WzjxD8L+SP+KpXocf8AMPva9Grzj4tnHiH4XkjP/FUr2z/y4XtAHoq8AV5J8a9XkHiLw7oep6/c+D/CF9Bcy3uvWl39jkFxGYvJt/tGQIg4aVs8Z8rbnnB9b6DH8q8t1/4laf4h1vxH4ZXwbqHiePRbuK0vlNqktv5rQRXCjDZzhJo+o6n2zQBzdp8WPFVn8QfBOjhrW98E6vp1u0fiq+sZI5NSuXR2MaBCqwOVRXCsmMbumMV7lNOlvE8sjiONQWZ3O0KB1JJ6cV41qt7HrXi2w8RXfgLxNJf2QHlx7v3BZd2xzGWwWTfJhsfxt61Prfjy/wDFM/8AZt98OPEFxo4CytMJYwkzhs+UyBslcgHng4xinYdjf8MCf4k6pbeKbyKa10exnl/sa1cFDN96M3UqnqGBPlg9FO7qRj0NOFwa87T4n6nGgVPAevqoHAEKgAdh1rQ8HfExPFfiTUtCm0XUtG1Cxtobt0vowoeOVnVSpB55jbIoCx21cx8Tj/xbzxL/ANg6f/0A10wORXM/E4/8W88S/wDYOn/9ANIRY8CnHgnQP+vCD/0WtYfxm8Oan4q8DXFlpcYu386KS405pfJGoWyuGmtd/wDD5qApk8c84rc8CnHgnQP+vCD/ANFrUXjvxlb+BdB/tO4tri9LzxW0VtagGSWSRwiKMkDqf/10xngXxV1G41r4aLJoGj+JfhRfaxren6Np11FKmn3BuJ5DEsk0Kbh5SNJkrkF+emM19L6dajT7C2tRLNOIY1j824ffI+ABuZj1Y4yT3Nef3HxGvrsIJ/h9rkwjdZFEkKMFdTlWGT1B6HtUw+KWrDj/AIQTxB/37X/GgLGj8YNZ/sH4beIL7Y7+XbHiN9jc8cH8a3vCulHQfDWlaYzI72VrFbs8a7VYqgBIHpkV5D8QvFGv+Lp/DVrH4D18adb6pHfXsqhAwWH50TaT86uw2MOwPeuv/wCFo6qB/wAiJr57/wCrX/GiwWPRKK5P4d/EOz+Ithqs9raXdhLpmoy6ZdW95HsdJowpYe4w6811lIQh61594eJPxi8WZxkWdqoA4+XbkfqTXoJrz7w+R/wuLxYF72lqWyejbRxj0xj9aAIfjp4j1Tw54UsW0+4fTbG71CO01XWYgC+l2bI5e5UHIyGEaZIO3zN3bI81ufjc3w2l8PabperP408NTXZt013UHkuJLp2mMX2SKeNSpki4Yyy/KykKCWyR6n4i+JiWniC/0C18Oanr728Km7NrErRrvGQhyeSVOfTFcR4g146qdKs5Php4rj0vS5N0Wn2ISGzmxgqHiUgMqlQVBGAadhnuinj1pc15YPjRrXI/4Vr4nJHUCOPI/DdR/wALn1r/AKJp4o/78x//ABVIR6nkUY5z36V5s/xinsrrTk1HwfrmnQ3t1FZi4mjXZG8hwpbngZ616SpzmgA6UtFFABRRRQAUUUUAFJnBxRnnFeU/GT9oDR/gve2Ca3HaJaXjWqJcT6pBblTLeQ2zEpIwbagmEhcZG2NwduMkA9VDhhkdKUHNeM/Df9qTwX4/vL61uNa0PRLqK6S1gtrjXbSWW4dhkKFVz83IUhSw3ZALYzU97+0jpem6Do183h/WdTvdc1BrPS9G0hI7i+uItlxIlwyM6BI2S1nYEtj5eCewB7BRXL/Dj4gWnxL8N/2xaafqOlBbma0msdVhWK5glico6OqswBDKehNdRQB5d8YtStLbxZ8MrOW4SO7uvEC+RC33pNkErPj6DmvR8N6H9a8b+N3geDxv8W/hQkt/eabPp9xf3dvcWMmx1f7My/lgmuk/4VZqGf8Ake/En/gSKtFoh8caxPpnxf8Ah1bLqN9Ba3v26Kayihke3mIhyjOwUqpVsYyR96vRgrehrzuX4Z3kGzzPH3iBBIwRRJdABmPQc9/QDrTx8LNQH/M9+JT9bkUahqbvxK+X4feIScj/AEN/5VoeAyB4I8P9B/xLrf8A9FLXmXxE+GOoQ+AvEMg8c+Iyy2UmCbkHB2nB/CrnhL4Y383hLQ5B448RRB7C3IRLngfulpCPXc815x4LP/F6fiV2/c6V/wCipaafhZqJ6ePPEmf+vgGsPRvhTZz69rl/pnxJ1281CRo7e/WDUEkMLRg7VdV+6cMeDzSsKx7LkVwGhMT8YvFfU/8AEvsiM9P+Wn+NVR8LNQx/yPniT8LkVxfh/wCG1/J8WPGEI8ceJAqWtn1uRwdhJbOO/p7U7WHax7t83uaxvGMkcfhnUWuJ7u1hWEs81mGMqAckgL8x4B6Zrlv+FWah/wBD34k5/wCnkVW1PwA+i2M19qHxG1yws4F3S3N1fLFFGPVmbAFMZL8Bb6/vvAkz3TXj266ldR2D3cLxlrQSEQlQ4D7NuMF/m9a9Gy3P3vXoa87h+GV7cQpNF4+8QyQyKGR47lSrKRwQR2NP/wCFW6hx/wAV14k9/wDSB/hQBJ4JI/4Wv8QvXzLLP/gOteig18/+D/hvqMvxL8ewN468RkRPZgZnA/5YA5yB7123/CrNQ5/4rzxL/wCBIpWFY9KzXnXxaVn8Q/DDaCceKVY7RngWF7mon+GN7GjM/j3xGqgFizXQAAHrWZqfwRHiSTSLu48c+I7g6ddC/s5I7wYWXynjDZHUbZX496VhWPWz/TvXk/wmJ/4Wj8bsZ/5GOz/9M+n1oj4WagX48d+JADgAC5HH6V538Nfh3eXXxD+LsSeL9et2g1+0DSR3GDKf7IseW9T/AICiw7HsfxH0KTxT8PfE+jJNdW76hplzarLZ/wCvQvGyho8/xDPHuBXLfA231Gz0jVLa806aztUuF+zXE9sbWS4G0biYskDBGMjrVn/hVt+M58d+JOAeTdcVlaH4asfE/n/2L8VtS1gQcS/YNUim8v8A3tpOPxpgergsQeCK890Y/wDGQvijnj/hHdN/9H3dL/wq2/5x478Sf+BNcFp3w4v3+PXiC2/4TTxCoj8O2DGQXPzMTcXPf2x+poGz6Grmfibz8PPEg9dPn/8AQDXOD4WagR/yPfiXp2uRWV4m+HEFto80OtfErW9PsrwfZTJd6gkIcuCAis2BuPYUrCsegeBD/wAUToHb/QIOv/XNa5H4+n/ildF5/wCZh0vkdR/pSc1FY/B+702wtrODx14lENvGsSBroE7VAAzx6CuL+M3w3vbLwtpbt438ROz67pqKzXAO0m5TBH507BY99yxJ69TXG/F3R31nwFqIEl/HJaAXkaafIySSsmSEyoJIPcd6ov8AC2/Lsf8AhOfEgyegueBVDWPBC+HbFr3VfiXrOlWSMFa5vr9IowScAFmwMnp1pjOu+H1hNpngTQbWWe5uZUsoy8t0SZWYrk7j1zk47V0ILFgDnk55rzbT/h9Jq1lFeWHxF129s5hujuLa8SSNx6hhwasf8Kt1AkAeO/EnX/n4FIVjP+ABxd/FH/sdb7n/ALZW9es5r5x+Dfw0u7mf4iGLxhr1pt8YXwbybjG/93Dyff3r0X/hVl+SB/wnXiXn/p5FKwWPSCa8+8PNn4xeLe3+iWgxnr8v3vxzj/gNc/ZeHLXU9cutHtfiZ4gl1G1GZYFuTkDvg4w2OM7Scd8VZtfgfLa6zeanF458Ti7vEjSUtdgghemBjinYLF/wtn/hc3jvGcfZ7Hv1/d8f5969C+YHPOPSvC/Afwz1DUfGvji9k8Z+IA6XsdmFF0QuxIxjpznnqTXef8KvvQcf8Jn4g/C7PT86AOD0rRvFlp8fZ44La8l0WG5mu7nVbhHRZopUDRwo27YyxsSmMbvlz3Fe9KRivJp9DsbTxHDoUvxE1qPVJV3JbG7fnI4G7oGPUKTk5yBW4vwuvcf8jp4gP/b0aQiL4zsHsPC1qAS1z4gs4wewILPz7fJj8a9DXpXg3xo8AXugeELHWk8W65Pd6ZrWmT24muSybnvIoW3KeoKSuMe+e1e8qNopCHUUUUAFFFFABRRRQB88/tT+GLDxZc6LZa3BeW+kBGcapBp51JYpt3EYtiCoLDkuynhQBjv4X8WINS8V/BL4Jjxlpb6reSWdp/aF1rN79iv4NRtl89vL/dNIJ5GgZBJ91VMqgBpVr74IOeKx9Z8GaJ4ileXU9Ltb+R7ZrRmuIw+6FvvJz2NAHy78EfC2nXnjttR1fT9HsriDTro6RFcW0KpNcXL273ShkVUbypoFH7vA3SSFRgjHjclj4YNn4K8Iz2vgXTm/4SVdSvLOW0u57Ag6dqSec8/yCSEOI1iSPaIyFBLZyf0FufBmiXdpplrNpdrJb6ZIktnG0YxAy/dKehFXJ9DsLmJI5LG2kjQbVV4VIVfQDtQB4t+xk2nw/CO+sdOl054bHxDqkBTSI3S1T/SndRErksFKurDJPDDmveKr2ljBYoUt4IrdSclYUCgn6D6D8qsUAeZePJ4oPjF8OWlkSMYv+XYD/l3PrXd/2jZEn/TbYc/89RVPxR4G0Pxp9l/trTYb/wCylmhaTIaMsMNtIIIyODWMPgt4MGf+JFCM+ksn/wAVVXKuc/8AF2wGtar4BubGwj1aXTtfguJbiKZAbKHDeZKckZGMAgc/MK9F/tGyyc31v9DKtc3/AMKY8GjpokQ/7ayf/FUD4L+Dcf8AIDi/7+yf/FUXC4nxL1Gz/wCFeeIsXlu3+hSdJV9PrVzwVqFn/wAIZ4fBvLdSNOt+DKP+ea1maj8CfA2q6fc2VzoEMttcxtFKhkk+ZCMEfep8HwP8E28MMS6DAFijWNP3knCqAAPvegFK4XOmnvrKS3lja7gcMhUoJgN2R0znivMfhDbxQavq19feH5vDN4oa1iWaSEQGESsVCbGO8nglmGegGAK6z/hS3gwHjQoRnriWTn/x6l/4Ux4NI50OI/WWQ/8As1FwudGNQsweb23P1lFcH4Z1K1Pxj8af6Zb4+yWX/LVeuw9s1sD4LeCxnGhQjJycSSf/ABVQj4F+BRcTXA8O2vnzALJLufcwH3QTu5Ap3C51f9o2f/P7b/jKK5zx9PaT+HZCtnFrksTrKltE8bSKRkB0VyFYrnOCQD60w/BPwURg6DD6f6yT/wCKp3/CmPBvX+w4gfaWT/4qi4XKXwd06Twp8M/D+karcWsOo2sBWZFnDYJYtz74IyOgNdj/AGhZnP8Aptv/AN/RXM/8KV8F7t39hQ59fNk/+Kpf+FLeCwSRoMGf+ukn/wAVRcLmR4O1G1X4qfEEm8twrNZEHzV/591HrXd/2jZYz9ttgPeUVy0XwL8CwXE08fh21jmnx5sis4Z8DAyd3NSD4K+CwMf2FCB6CWT/AOKouFzD+PPhy8+IXww1jQtD1azhu7mPJhklwt0oBJgYqQQHOAcdsg8Gt34Z3Elh8O/DVprDWun6nBYQxXNqJlxFIqAFRyeBj1pD8FvBhOf7Ch4GP9bJ0/76pf8AhS3gsgZ0OI4/6ayf/FUrhc6UalZKcm9t8A5P71a8w+FWoWq/Ev40lrqBVPiKzAJkGD/xKLA+tdX/AMKY8GjpocWf+usn/wAVUUfwO8DxPcOnh63V7hw8rK8gMjBQoLHdyQqqM+gFFwudLPe2U0MiG8tyHBXiYD9e1eS/s/8Ah278B2U2j3B+x6HY28FnZjUDbrckxjbw8QHmJtAwz/MTkkCu6/4Uv4M4/wCJHFx/01k/+KpD8F/BhIzocRx0zLIf/ZqdwudJ/aVlj/j+tv8Av6P8a860vULT/hofxMTdwBT4b0/B81ef9IuveuhPwW8GEAHQoiP+usn/AMVUY+BvgcXbXQ8PW4uGQRtKHk3FQSQud3QZP50XC51H9o2WP+P63/7+r/jXjf7QvhLUPF934YvtHmW8TT3nEtrB5Mokd48RmRJTtKBgCSPmHavQf+FMeDP+gHF/39k/+KoHwZ8Gg8aJGP8AtrJ/8VRcLo2tLvlTS7QXt5ZfbVhQT+TKNnmYG7b7ZziuE+Ot9aP4U0YC7gOPEOmEkSrgf6VH710B+C3gwqAdChI9PNk/+KqG5+BXgW8h8qbw5azRb1k2SM7DcpyrYLdQRwe1FwudY2o2W45vbcexlFcx8R9LsPFXhC/swum6leIpns4roo6LcKD5b4bIyD0pw+DHgzH/ACA4h9JZP/iqQ/Bjwacf8SOL/v7J/wDFUXC5b8FW2n+HvB+jaXHJa2gtLSKNoElXCNtG4dfXNbQ1GzDD/TLc/SUVzQ+C3gvOf7Chz6+ZJ/8AFUn/AApTwVzjQYM/9dJP/iqLhc5X4F6naef8Sw13CpHjS/X5nA5EcPFeoDUrIc/bbcjr/rV5/WuWg+B/ge2Mpi8P28ZllM0hR3G+Q4y7YbknA59ql/4Uv4MGP+JHFj2lkH/s1CYXRwngz4d32g/FTUNeutRszp7zXEyN9vLo4kChVihIAhYAfO4J38elevjUbJcf6bbH6SrXNH4LeDCCP7Chwev72T/4qk/4Up4LOM6DAccD95Jx/wCPUXHdGb8NdUsk8R+Owby3B/tgnHmr/wA809671tWsv+f23H1lWuPi+BXgSCaaaPw3axyzNvkZGcFz6n5uTU//AApjwZ/0A4h9JZP/AIqkTocJ4s+Hl9q3xhsNa0zVrWw8PSS2+o6ntul3XF1CjRKCm3IHl+UMhh9zkGvZV1axAP8Aplvx/wBNV/xrlf8AhTHg3PGhxe/72T/4qm/8KV8FndnQYTu6/vJP/iqA0MX9oPUrSX4X3CpdQsf7U0ngSA/8xK2969RBzXEf8KU8E5Unw/bNtdJAHZ2G5GDKcE4OGUEe4rtwMCkIWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=" alt="" />
代码:
 /*
挺好的一道题,本题要重新建立树状数组,用dfs从树根开始搜,每搜到一个点他的左值记录该点的新序号,他的
右值记录改点的子树中的最大深度,这样每个点就变成了树状数组中的C数组参考上图,然后套树状数组区间求和的模板就行了。
注意本题如果用vector会很费时,vector<int>a[MAX]会超时,vector<vector<int> > a(MAX) 985ms过了(后面这个什么鬼!)。
不如自己建树用时会更少。
*/
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int MAX=;
int c[MAX];
int lef[MAX],rig[MAX];
int n,m;
int rot;
int head[MAX];
int lne;
//vector<int>a[MAX];
//vector<vector<int> > a(MAX);
struct node
{
int to,next;
}a[MAX];
void tadd(int u,int v)
{
a[lne].to=v;
a[lne].next=head[u];
head[u]=lne++;
}
int lowbit(int x)
{
return x&(-x);
}
void add(int id,int val)
{
while(id<=n)
{
c[id]+=val;
id+=lowbit(id);
}
}
int sum(int id)
{
int sum=;
while(id>)
{
sum+=c[id];
id-=lowbit(id);
}
return sum;
}
void dfs(int x)
{
lef[x]=rot;
//for(int i=0;i<a[x].size();i++)
for(int i=head[x];i!=-;i=a[i].next)
{
rot++;
//dfs(a[x][i]);
dfs(a[i].to);
}
rig[x]=rot;
}
int main()
{
int x,y;
char ch[];
int flag[MAX];
scanf("%d",&n);
for(int i=;i<=n;i++)
{
flag[i]=;
add(i,);
}
lne=;
memset(head,-,sizeof(head));
for(int i=;i<n;i++)
{
scanf("%d%d",&x,&y);
//a[x].push_back(y);
tadd(x,y);
}
rot=;
dfs();
scanf("%d",&m);
while(m--)
{
scanf("%s%d",ch,&x);
if(ch[]=='C')
{
if(flag[lef[x]])
add(lef[x],-);
else add(lef[x],);
flag[lef[x]]=!flag[lef[x]];
}
else
{
printf("%d\n",sum(rig[x])-sum(lef[x]-));
}
}
return ;
}
上一篇:剑指Offer:面试题25——二叉树中和为某一值的路径(java实现)


下一篇:ST-PUZZLE-2.0(一个益智游戏)